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XIIIL. On Figures of Equilibrium of Rotating Masses of Fluid.

By G. H. DarwiN, M.A., LL.D., F.R.S., Fellow of Trinity College, and Plumian
Professor wn the University of Cambridge.

Received April 28,—Read June 16, 1887.

[PraTES 22, 23.]

In a previous paper® I remarked that there might be reason to suppose that the
earliest form of a satellite might not be annular. Whether or not the present inves-
tigation does actually help us to understand the working of the nebular hypothesis,
the idea there alluded to was the existence of a dumb-bell shaped figure of equili-
brium, such as is shown in the figures at the end of this paper. These figures were
already drawn when a paper by M. PoiNcARrE appeared, in which, amongst other
things, a similar conclusion was arrived at. My paper was accordingly kept back in
order that an attempt might be made to apply the important principles enounced by
him to this mode of treatment of the problem. The results of that attempt are, for
reasons explained below, given in the Appendix.

The subject of figures of equilibrium of rotating masses of fluid is here considered
from a point of view so wholly different from that of M. PoIiNcaRrE that, notwith-
standing his priority and the greater completeness of his work, it still appears worth
while to present this paper.

The method of treatment here employed is simple of conception; but it is unfor-
tunate that, to carry out the idea, a very formidable array of analysis is necessary.

In the last section a summary will be found of the principal conclusions, in which
analysis 1s avoided.

§ 1. Formule of Spherical Harmonic Analysts.

Let there be two sets of rectangular axes, as shown in fig. 1; and let z be
measured from o to O, whilst Z is measured from O to o; let 7= a® 4 3* 4 22,
R*= X4 Y*+ Z?%; and let ¢ = 00.

Then

x4+ X=0, y+ Y =0, 24+ Z=c. . . . . . (1

Let w;, W, denote the solid zonal harmonics of degree ¢ of the coordinates z, ¥, z,
and X, Y, Z, respectively.

Now we shall require to express the solid zonal and certain tesseral harmonics of

% ¢ Phil. Trans.,” Part IT., 1881, p. 534.
3 ¢ 2 21.11.87.

%J.
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380 PROFESSOR G. H. DARWIN ON FIGURES OF

negative degrees with respect to the origin O as solid zonal and tesseral harmonics of
positive degrees with respect to the origin o, and wice versd; moreover, the results
will have to be applied to a sphere of radius @ with centre o, and to a sphere of
radius 4 with centre O. This last clause is introduced in order to explain the intro-
duction of the symbols «, 4, in this place.

Fig. 1.
Y

N

The formulz required will be called ¢ transference formulee,” because they are to be
used in shifting the origin from one point to the other.

The obvious symmetry of our axes is such that every transference formula from
O to o has its exact counterpart for transference from o to O; thus a second
symmetrical formula with capital and small letters interchanged will generally be lef*
unwritten. When necessary, 6, ¢, will be written for co-latitude and longitude with
regard to x, y, z; and @, ®, for the same with respect to X, Y, Z.

Then, since .
R = 7" 4 ¢* — 2rc cos 0,

we have the usual expansion in zonal harmonics

e k= gy
‘R=,c§025' T ¢

The usual formula for the derivation of the zonal harmonic of negative degree
141 from 1/R is

(=) & 1 W |
i dZiRT R N )

Hence, on differentiating (2) ¢ times with respect to Z, or, which is the same thing,
with respect to — z, we have, from (3),

w; 1 k== di

¢ RE+Y T oo de ok
But
& b M
awr=k{(k—1)... (k=14 1) wei= ;5w
Hence
: I/V-, 1 k== k! e
C o =~ T TR
JAFY T T it
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EQUILIBRIUM OF ROTATING MASSES OF FLUID. 381

~ In interpreting this formula, it will be noted that, if ¢ is less than %, the term
vanishes : hence the summation runs from k= o to k=7; it is therefore better to
write & + % for &, and we thus obtain

N )

¢W; 1" ® k44! u,f
.RQ"*-I Cr=0 7/1/(3!

This is the first transference formula by which the solid zonal harmonic of degree
— ¢ — 1 with respect to O is expressed as a series of solid harmonics of positive
degree with respect to 0. The formula (4) includes (2) as the particular case where
t=10. The right-hand side of (4) is convergent for r less than . A similar formula,
convergent for » greater than a, is easily obtainable, but with this we shall not
concern ourselves.

It remains to find the transference formula for certain tesseral harmonics.

If we put
p=14+v), . . . . . . . . .. (5)

the general expression for the zonal harmonic is

! -
=3 (—Yorr=am? e - - - - o (6)

where the summation extends from £ = 0 to k = 4¢ or 3 (¢ —1).
From (6) we have
dw; %!

=3

gp =2V i .o

Now, since 7'2 =2% + 4p, we have

”’f ol o —(&+1) . PR Y
dp ==(=)d [Ic+1r2 i—oh—n T [f P

4G+ D) — = 2 (= 2= 1)]
+1). kP — %! o (8)

=3 (-
Also

v .. 22+ Dk + 1) i o

220+ Dw;=3(— N 1) 8.4 — 2k A ()

- Subtracting (9) from (8), and simplifying the difference, we have

dw; ) G+1)@E+2).8 .y
277 — o \E+1 =Rk .k
e ~ 2@ A Dw= (=) e i

7 4 2! b 9mie _
(— )k+1/c+1!2.'i+2-—27c-— 2!(7c+1‘)z+2 =2 o+ 1-1

=3
=%,
= dp

2' . . . . . . . . . . » [ [ . . (10)
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382 PROFESSOR G. H. DARWIN ON FIGURES OF

the last ,transformation: being derived from (7) with ¢4 2 in place of ¢, and £+ 1
in place of k. ;
Differentiate (10) with respect to p, and notice that dr®/dp = 4, and we have

cl”wz dw, dPw;

s = 2@ =) =0
Then, with 4+ 4 2 in place of 1,
d2w; dwi d?w;
72 ._(ip%g 2 (2 + 3) 49— dp;!. N ¢ A0
Now
ad w; 1 o dw;
% il 7.m+3{7 d —2 (27“ -+ l)wl}

Differentiating again,

dpz plitl pts

d? 1 d*w; dw;
{ﬁ dp;“ 2 (20 +3) ”}

1 d?
= jaits 0};@“’%4 by (11):

or

1 dwi, @& wi_, :
L g 3p27,2i—:§' Coee e (12)

But since p = 1 (2 + 3°), it follows that, in operating on a function involving # and y
only in the form a? + %2,

d d d d d d o @
R 7 — = 1y — _ e — =L (¥ - )
Also 2 d th d d d
d 2 72 2
P11 % 1.0 A, IR By S
da*~ 2dp + 3 dp®’ T 2dp + 1Y dp* ?
so that
d? d? d?

Now let us put

Then

and therefore (12) may be Written
8@02+2= 82 = s . s s » . . . (?4)

°r+1
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EQUILIBRIUM OF ROTATING MASSES OF FLUID. 383

These expressions in (14) are obviously solid tesseral harmonies.
S Wiy
R+t

-The transference formula required is for
By the formula (4) we have

EAW_y  1FT2 k44 —2Vwy
ini_S - Cr=0 ’L'—Q'IJY C," ’

operating on both sides by &% and applying (14), we have

O s 1657 k41— 21 S

- ipg = — ———=. . . . . . . (15
.R21+1 i+2 Cr=0 2~2‘k! 0]' ( )

Now the general formula (6) for the zonal harmonic shows us that d*w;/dp? is zero
when £ =0, 1, 2, 3, and hence &?w; vanishes for the same values of 2. Thus the
summation in (15) is from & = o« to k& = 4, or, if we write k + 2 for k, from o to 2.
Hence (15) gives

¢ gy, = 1Py Bl o\,
R%HSW’”—”ii—mm-zz ¢/ aF e (18)
This is the second transference formula required.
We observe that the transference of a negative zonal harmonic gives us positive
zonals, and that tesseral harmonics of the type 8 W,,,/R%*! give us harmonics of the

type 8%y

§ 2. The Mutual Influence of two Spheres of Fluid without Rotation.

Imagine two approximately spherical masses of fluid of unit density, with their
centres at the origins o and O respectively, and with mean radii @ and 4 respectively.

We shall find that each exercises on the other certain forces, one part of which has
a solid zonal harmonic of the first degree as potential. This part of the force must
remain essentially unbalanced in the supposed system, but we shall see hereafter that
it is balanced by the rotation to be afterwards imposed on the system.

Meanwhile it will be supposed that it is annulled in some way, and we shall content
ourselves with finding the mutual influence of the spheroids, and the outstanding
term of the first degree of harmonics.

- Let us assume that the equations, referred to our two origins, of the surfaces of the
two spheroids, when they mutually perturb one another, are

A + <«_4_‘)3Z=2w 20+ 1 <¢_z>z‘+1hi — '~}

a a; i=2 21— 2 \¢

| ' (17)
T a3 ig® 20 + 1 /4Ni+1 o
A~1+<A> 3, 2i—2<c> E=W_; |

The 2’s and H’s are unknown coefficients, to be determined.
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384 PROFESSOR G. H. DARWIN ON FIGURES OF

We have now to find the potential at any point in space.
The mass of the spheroid o is $7a®, and its potential is §ma’/r.
The potential due to the departure from sphericity, represented by the term in 4; in

the first of (17), is
4 A3 3h, g>" a\itl w; |
B 99 p > i e e e e, (1 8)

This is written in a form convenient for passing to the case of » = a. It may also

be written in the form
' a\%+1 3%, cdw;
Qi 9 puFL e e e, (19)

4

dd? (

when it is in a suitable form for application of the transference formula (4).
We shall now introduce two new symbols, namely,

a\2 AN2 :
-y:(;>, F:(;) R 640}
Then (19) may be written
a>3 Syl cwy

4 () T *f T
37TA (c 2@'_29 pHTL?

and, of course, the similar potential with the other origin is

3

ANS BH; T W,
4,08 (2} 2 OV
o <C> % el e oo (2
The whole potential at any point of space consists of the potentials of the two
spheres and of the inequalities on each. The potential of the inequalities of the sphere
0 may be written in the form (18), and of sphere O in the form (21).
Thus the whole potential is

4 9 . _‘_L 4:‘77'_(4.3 k= 3}]42 ? k ft_'\k.*.l 2@ ")-. 3

s r T 3¢ =2 2k =2 \c r Lok (2" L).
L Ard o | 4md® [A\3 i< BHTITL AW o
LERETR 3 <—c_> 2, 2 —2 pEtl (22-i1.)

The first line of (22) refers to origin o, the second to origin O, and to this latter
half the transference formula (4) must be applied.

Now apply (2) to the first term of the second line, and (4) to one term of the series
in the second term, and we have

47rA3£ __ A3 ’°'=2°° (a ko
30 R 30 k=0 \6

at’
and .
[477-0,3 (A)3 3H}I’ij] W, Awd3 <a>3 SHTi k=2 44! <a>’f wy

20— 2 |R%+1 7 3¢ \¢) 2—2 0 klil at

4

3

c
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EQUILIBRIUM OF ROTATING MASSES OF FLUID. 385

Thus the second line of (22) when transferred is

4or 43 [k=» ()kaw]c 3 3i=0w k= °°75+'LYI"‘ a/kwk .
IO e TR Y] )

Then (22-i.) and (22-ii.) together constitute the potential now entirely referred to
origin o.

We want to choose the A’s and H’s so that each sphe101d may be a level surface,
save as to the outstanding term of the first degree.

In order that (17) may be a level surface, when we substitute for  its value (17) in
(22), the whole potential must be constant. In effecting this substitution, we may put
7 = @ in the small terms, but in 4 wa3/r we must give it the full value (17).

The constancy of the potential is secured by making the coefficient of each harmonic
term vanish separately—excepting the first harmonic, which remains outstanding by
supposition.

We may consider each harmonic term by itself.

As far as concerns the term involving wy;, we have, from (22-1.) and (22-ii.), as the
value of the potential,

4 9@ 4 A3 3k, ak 7ﬂ+1wk gh_v_k 3_2 oﬂfw;cZ © k4 q) -1
g md 1°+ 3¢ [270—2 ¢k+ ¢ a/‘+2 ¢/ \e c"i_zz k’z'@-—lH ’

and the value of » which must make this constant is

7 82k 4+ 1 fa\k+1 _ g,
E“H'( )2&-2() b >

but in the small terms inside [ ] we may put » = a simply.
Make, therefore, the substitution, and equate the coefficient of w; to zero. On

k
dividing that coefficient by drd? (%) , we find

_2k+1 by + - 3h +14+3 ()i“z"’k+.i!']f‘i‘1m=0.

2k — 2k — 2 i=2 klil ¢ —1
Therefore . o
i=o L4 g Ti-
—_ 3 .
m=1+3(2) FEES L @)
and, by symmetr
y y y? _1 A\ 7,2007 +7}Y zlk. (24
+ £ /,_gfr'z?z—_iZ' )

Multiplying both sides of (24) by the coefficient of H, in (23), we have

3k+7’! P7‘—1 3L+7”P 31 °°7+q,lg~+]{/ le“rl
3 (% —3 2
2(0) k!?‘!r—lHr—2<0> lcffr'o——1+()<>< >i=22 rlitklr] z—-lv—lh‘

MDCCCLXXXVIL—A. . 3 D
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386 PROFESSOR G. H. DARWIN ON FIGURES OF

Performing 'S on both sides, and substituting from (23),
2

r=

8r=of 4 7] Iv-1 a\8 [A\BT=® i=® p 4 Ly 4 flop=l Tyl
o1 —=23(2 KT 7 3y (&) (4 Y .
m—1=g (0 RN I (O () E Y e e (29)

c C) r=2i=2

Now let

=

LY D
(k, T) = 22 kle! 7 —1
et Sy iy Tl VR B (26)
[k, ¢, T]= 3 - :

o Tlolklr! 7*-—1J
And (25) may be written

a\3 a\3 /4\3i=» . ,Yir—l
n=1+3(En+ @ () (5) Emingm . @)
By imparting to % all integral values from 2 upwards, we get a system of linear
equations for the determination of the #’s, and it will appear below that as many of
them may be found numerically as may be desired.
We now have to consider the series (26).

Let
' r
B=iTr B=i—g
and denote the operations
1 1 @ .
XTc_lfy—}"yA or i‘!&—ﬁr)‘ by B

Consider the function y™E* v log (1 + B).

Now
) r=00 ar—1
| log (1 4+ 8) = —log (1 —9) = 3
Therefore
_}_ﬁr:w ,ylc+r _r=wk+7.! '}’" )
Blylog(l+B) =0 % i 1= % =1
Thus
(k, ) = %E’” ylog(1+8), (hT)=1ETlog(1+B). . . (28)
Next consider the function yEFE", ylog (1 + B).
As before,
Z. r=og rl o
Boylog(l+B)= 2 S 1
and

% 1 Clk T=°Oi+7-!,yk+r
EkE’)/]Og (1 —l-' B) ‘—-“EWTEZ — 3

glrl r—1
TRl !l g
g lrlelkl r—1
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EQUILIBRIUM OF ROTATING MASSES OF FLUID. 387
Hence
[k y) = BB .ylog (L + ), [k T]=p FE.Tlog (1 +B). (29)

We must now develop the symbolical sums of the series in (28) and (29).
The following theorems are obvious :—

dr P! — n—l
_%1yp 2 10g(1+18) ,.Y)n

(1 —y)r= (1 - 7)"1”"”

Then, by their aid, we have from LErsNirz’s theorem——

10+n
p—

dr +’1 t=Fk It dt +1 dk-t
;l?:')’k 10g(1-|—,3)= 2 r]c__“g,};'yk d,ylc—tlog(l +,3),

_GE_ kL kA llh—i— 11 gt
z:otilc—t! L—t+ 11 (]__._,y)lc—t’

in which we interpret (— 1)!/(1 — y)° as log (1 + B).

Thus
el 1 k411
(5, ) = GGt xnG=pir_nP b (80)
with 8°/0 =log (1 + B).
Again

Y g oA g (14 8))
1* E g1tk —t—11 & oitk-itl
P o1k =tk —t+ Lldy (1 — et
_osRrst k4 1lk—t—=1li+k—t+1llc+bk—r—¢—1! 4 Tyt
—7t§0r=0t1k—t!rli—¢!k—t+1!7c—t——1!i+k—-r-—t+1!‘8 '

Hence
[k’ % y]
t=kr=i 1 B+ 11i+k—t+1! Bi+k=rt
—,E'o,zo(fi+lc—-r—t+1)(@'+k—-7'—-t) E—t+ 1! tlk—tlr!ld—o! (31)

In (30) and (81) the infinite series are replaced by finite series.

From the form of the series it is obvious that the result must be symmetrical with
respect to & and 1, so that [, 4, y] =[4, k, y], but this is not obvious on the face of
the formula (31).

We shall find, therefore, the symmetrical form of (31) for the first few terms.

If ¢t =k, » = 4, we obviously have

First term = (k4 1) (¢ 4 1) log (1 + B).
The second term arises from ¢t==F% r=¢—1, and t =%k —1, r=+¢ The two
corresponding values of (31) will be found to add together, and we get

Second term = 4 (k+ 1) (¢ + 1)[2 (¢ + k) + ¢&]B.
3 D2
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388 PROFESSOR G. H. DARWIN ON FIGURES OF
The third term arises from t =k, r=1—2; t=k—1,r=0—1; t=Fk—2,
r = 1, and we find—

iG— 1)+ k@ — 1)
21

_l..

Third term = 5 (k 4+ 1) (i + 1) {

(i +2)(+2) |, k@ +E+1)
21 31 + 2P }'82‘

A symmetrical form for further terms may be obtained by writing (31) first with
© before k and then with % before ¢, and taking half the sum of the two results. In
computing these coefficients it is a useful check to compute from both unsymmetrical
forms, when the identity of results verifies the computation.

The following Tables have been computed from (30) and (31). The numbers are the
coefficients of the quantities at the heads of the columns for the values of t and ¢
written in the first column. The series (%, y) is terminable with 8%, and the series
[%, 4, y] is terminable with B¢+,

In [k, ¢, y] the coefficients have only been computed as far as 8% so that the last
which is given completely is [2, 4, y]; however, with such values of B as we require,
the series are carried far enough to give numerical results with sufficient accuracy.

TaBLE of (%, y).

Log (1+8) + B + B2 + 6 + gt + g
E=3 4 6 2 1 .
=4 5 10 5 12 1 .
=5 6 15 10 5 11 1
TaBLE of [£, 1, y].
Log (1+8)] +8 + B2 + B8 +pt + P + B + f
F=2,i=2 9 27 181 8 13 .
Ek=2,1=3 12 48 46 31 12 2 ..
k=2, i=4 15 75 921 85 501 17 2L .
E=2i=5 18 108 163 190 | 151% 778 23 &e.
k=3,i=3 16 84 108 103 63 22 31 .
EF=3,t=4 20 130 210 260 219 118 36% &e.
k=8,i=5 24 186 362 552 594, 4344 | 206 &e.
' k=4,i=4 25 200 400 625 6872 514 2481 &e.
k=4,1=25 30 285 680 1285 17504 1681 1110 &e.
k=51=25 36 405 1145 2585 | 4272 50988 | 4345 &e.
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EQUILIBRIUM OF ROTATING MASSES OF FLUID. 389

We must now go back and determine the value of the outstanding potential of the
first degree of harmonics, which will be annulled when rotation is imposed on the
system. The potentialis givenin (22-1.) and (22-ii.) ; (22-1.) contributes nothing, and
(22-ii.) gives us, for k=1,

47TA di=oq 4 1) Ti-1 w,
[ +2<) E’z 114! 4,’——1}[’] a

Thus, if we call %, U, the outstanding potential of the first degree, when referred to
the two origins respectively, we have

4 43 a\3t=2 ¢4 1 Ta
U=y [1+§<_c—> .Ezz—lrl—lﬂ-i_lz 7%1_ (32)
= 32
dra A\Si=2i41 . A W
1=77P+%(ﬁzixzf’ﬂ7'zl

§ 8. The Potential due to Rotation.

Intermediate between the two origins o and O take a third @, and take the axes of
£and 7 parallel to those of « and ¥, and that of { identical with that of z. Let Qo =d
QO =D.

Then suppose that the system of the two spheroids is in uniform rotation about the
axes of & with an angular velocity o.

The potential Q of the centrifugal forces is given by

Q=1+ . . . . . . . . . (33
But
2=(+d Z=D—-=( d4D=c
=0 Y=, }» o
t=o  X=—¢
Hence

Q=3 (H*+ 2> — 22d + d?)
= 1ol[— b = )+ 3 — bt — )+ ) — 20

Then, remembering that
wy=12"— L — 1, w, =z,

==y, @=X*— 17,

0= — }o'g, + do'w, — o'dw, + Jo¥? + 32 . . . . (35)

and if we put

we have

Similarly the rotation potential, when developed with reference to the other
origin O, is

0= —10*Q, + 30* W, — @’ DW, + 3*R? + J®D% . . . (36)
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The last terms of (35) and (36) are constants, and the term in 72, and that in R?
are symmetrical about each origin, and so the corresponding forces can produce no
departure from sphericity in either mass; thus these terms may be dropped. Next
we have in (35) and (36) the outstanding potentials — w’dw, and — >D W, which
will be annulled by other similar terms, and so need not be considered now. We are
left, therefore, with the terms in ¢, and w,, or in @, and W, The ¢, is a sectorial
harmonic, the w, a zonal, and it will be convenient to treat them separately. We
shall begin with the zonal term.

§ 4. Disturbance due to the Zonal Harmonic Rotational Term.

The potential whose effects we are to consider is §o*w, or §w* W, according to the
origin which we are considering.

If an isolated spheroid of fluid of unit density be rotating with angular velocity w,
the ellipticity of the spheroid is 150*/ 167 ; therefore we put

15w?
T ler (37)
Let us assume, for the equations to the two spheroids,
Py pee g (AVIS 201 e\t
5—1+3€¢2 +<a> Ez % — 9 \e ll?*‘ . (38)
£—1+lZV2 23"=°°273+1<{1¢+1 W > e
.A._ 3€R2+ A ,;___227;__2 ; Z]gi

where [;, L;, are unknown coefficients which are to be determined. We now have to
determine the potentials at any point of the inequalities (88) on the two spheroids.
The potential of the inequality e w,/r® in the first of (38) is

w a\3 w
4.3 21 %Y __ 1 9 9 2
£ a°. a°, € _——wa(— . e e .. (39
5 3¢5 T 4 \74> 72 ( )

The similar inequality in the second of (38) gives us

W, AmdP | A\ S,
%#As'A2’%€"R32= 7;0 %—e( >C—R5—2 coe e (40)

c

The term in Z; in the first of (38) gives us, as in § 2,

dndS 3 [a\F [a\FHD o,
b <)<-\ N 1))

2k—2\¢) \r/
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The term in Z; in the second of (38) gives us, as in § 2,

3T —c* % — 9 R2i+l. e e e e e e e (42)

. s <A>3 3LTi-1 4 W;
The potential due to rotation is §w*w, or §w*W,, being the second term of (85) or
(36); this term we find it convenient to write

%wﬂaz@z% R 7))

The sums of the several terms (39), (40), (41), (42), and (43) are to be regarded as
the potential of perturbing forces by which the spheroid a or the spheroid 4 is dis-
turbed, and the arbitrary constants I and L are to be so chosen that each may be a
figure of equilibrium,

We may consider the spheroid a by itself, and the solution for it will afford us the
solution for the spheroid 4 by symmetry. In order to find the disturbance, the formulee
(40) and (42) must be transferred.

Now by (4), with 7 = 2,

dmds | (AN W,  Amdd | [A\PFZe B+ 21 fa\E ,
3 °° <;> B 3¢ 5°\¢) 2o 21! (c) ok (40%)
And again, by (4),
4d7rad A>33Lil—‘i"1 ¢W; drd? o (a\345> & + 4! Ti-1 a>’°‘ Wy
- ) - = S e e L[ =) — 421)
3¢ \c¢) 25— 2 R+l 3¢ 2\¢) o Wkl 4—1 ¢/ at (

Then (89), (40"), the sum of (41) from k= o to £ == 2, the sum of (42’) from ¢ = o
to ¢ = 2, and (43) together constitute the disturbing potential, all now referred to the
origin o.

In order to find the disturbance of the spheroid @, we add the perturbing potential
to 4mwad/r, give r its value (38) in this term, put » = a in the perturbing potential, and
make the whole potential constant by equating to zero the coefficient of each
harmonic term.

We will begin by putting /o = 1 4 §ew,/r?, and considering only the perturbing
potentials (89) and (43). 'We have then, for the coefficient of w,/r?,

— 47’ ke + 1o’0® + $0%P.
Now, with the value of e in (37),

e=—50°%* and —5+i+5=0.

Qo

— 470’

Hence the coefficient of w,/r® vanishes, and the term in e in (38) has been properly
chosen to satisfy the perturbing potentials (39) and (43).
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Following the similar process with the remaining terms of (38), and equating to
zero the coefficient of w;, we have from (40'), (41), and (42),

2k + 1 3

AN & + 2! 3iz=w I 4 41 TW-1
- - 1 3 —0-
L {—Zk—2+5€<c> Thr2r 2(0) 2, ma o l=0s
whence
AN I 4+ 2! Si=o I 4 g1 Ti-1 /
— 1 (% 3 ,
l"_5€<c> k! 21 + 2(0) zi k!l z—lL" coee s (49)

By symmetry, the condition that the spheroid 4 may be a level surface is

2 4 21 By il ]
—1 < )
Lr—"’e() r'2'+2<>i§2 T =il o - o (4D)
rkl o1

, and perform S on the whole, and
! kEl r— 1 r=2

Multiply both sides of (45) by ( >
substitute from (44); and we have

AN B+ 21 a\? 5 fa\3"=2 r + 219 4+ ! T2
1 (AYVET A 1 (%) s (%
b 56(0) k12! 5e(c> 2(6) 'r=22 21rlelk!l r—1

Ag’l/ © = 007-+fb17'+kf i—1 I\r__l ’
+<)(>(c> %2 rleltel k! %—17‘—1l£. oe e (46)

i=2 r=2

Introducing the notation (26) for the series involved in (46), we have

() perne+a+1(5) () w2}

3/ 4\8i=

+ () (‘;ﬁ) <:> Zi (%, 7, I‘]gi_%li. N (Y4

I

b

Each value of % gives a similar equation, and there is a similar series of equations
with small and large letters interchanged.
Now put

Z;g—-rae< )(7{“‘1)(]“'{'2)}"‘1

L= (%) (k4 1) (E+2) A e W

r
|
J
and (47) becomes

x"=]‘+<k+1><7c+2>< JRPICER

y
ol L e

i) TGy —*)"" - (49)
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We attribute to £ in (49) all values from o to 2, and thus find a series of equations
for the N’s. A similar series of equations holds for the A’s.

We must now find the outstanding potential of the first degree of harmonics. No
such term exists in (39), (41), (43), but it arises entirely out of (40) and (42"). If we
write v, for the outstanding potential, we have clearly

_AnAP [, (AN 3! a w5 (a3 e+ 1T L aw)
1=, {5€<c> 211le a 5(0) zzz 7/'1'7,--11110 a}’

v = 477A3—%e<~> { (iq) + zz s 1)2 (4 D20+ 2) iy }“ I ()

a

whence

V1=%?‘1%€<é>2{ <>+"2°° %ﬂyi—lxi}é.%. . (51)

(4 %

§ 5. Disturbance due to the Sectorial Harmonic Rotational Term.

In (85) and (36) we have found this term to be — 1w, or — 10°Q,.

2 2
We have already observed that, if the operation cgl 5 d2 or 8° be performed on w;,

dy
the result vanishes when ¢ =1, 2, 8.
Now, by (6),
k§,2( ) 4! 4= 9% 7
= Yo
pso\ T R1r 4 —20) P
— 4!

4!
T AT
Hence {d*w,/dp® = 3, and, since 8w, = L (¥ — 4?) d*w,/dp?, it follows that
gy = a* — y* = L%, and Q, =13 N ;1)

Hence the sectorial rotational term is — 1l ? 8%, or — % ? 8 W, ; this potential
is of the second order of sectorial harmonics.

Now, with e as defined in (37), let us assume as the equations to the two surfaces,

[

a

=1 _%E% _ (_4)3@3«) 2 + 1(5‘_)“1% Wiy )

72 @) ;=221 —2\¢c 74

R W, 8iz29; 4 1 /A\i+1 S, '
— =1 =1 4 L tt2
i A <A> 2221—2<> Mi— j)

We have now to determine the potentials of the inequalities on the two spheroids
expressed by (53).
MDCCCLXXXVIL—A. 3 E

(53)



http://rsta.royalsocietypublishing.org/

N

a
-
I ¥
y & ) ©

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

A

%

S

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

394 PROFESSOR G. H. DARWIN ON FIGURES OF

The potential of the inequality — e 8%w,/r* in the first of (53) is

3 D11 3 82,
_471'&'@2.168“4_ §2a2<£‘) (&0_4-. . (54)

7 2

The potential of the similar inequality in the second of (53) is

drd3 [AN? AW, L
-3, (;) 1—1—66”‘287;‘@‘ R (51:))
The term in 7 in the fivst of (53) gives us
dor A3 3m, [a\k @ 7‘+182wk+2. '
Y 2k—2<2> <r> 7 coee s (96)
The term in M in the second of (53) gives us
443 [a\3 3BM; _._ ., ¢ 8W;
—_— (= ¢ i—12 " T t+2,
. <c> A N 14
Lastly, the sectorial term itself is
r\? &
—ﬁ,-wﬁaz(;) N )

The sums of the several terms (54), (55), (56), (57), and (58) are to be regarded as
the potential of perturbing forces by which the spheroid @, or the spheroid 4, is
disturbed, and the arbitrary constants m, M, are to be so chosen that they may each
be figures of equilibrium. We may consider the spheroid a by itself, and the solution
for it will afford the solution for the spheroid 4 by symmetry. In order to find the
disturbance, the formule (55) and (57) must be transferred. For this purpose we
require the second transference formulze.

By (16), with ¢« = 2, we have for (55)

dnd (AN | OBW,  Awdd | [A\FET B4+ 21 [a\ESw,, ,
- <>1°€ BT 3 10€ >k§20lk+23<> o (55')

3¢ ¢ ¢ c

And by (16) we have for (57)

_Amd (NS BN, 68T,
3¢ % — 2 R+l
o Awar g <g>3k=2w I (a)fﬂ Sy (57)

T T 3 2N\¢) yShi—21k+21i—1"\¢) o

c

Then (54), (55'), the sum of (56) from k= o to k= 2, the sum of (57') from
¢ = o to ¢ =2, and (58) together constitute the disturbing potential, all now referred
to the origin o.
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In order to find the disturbance of the spheroid «, we add the perturbing potential
to $mad/r, give r its value (53) in this term, put » = a in the perturbing potential,
and make the whole potential constant by equating to zero the coefficients of each
harmonic term.

We will begin by putting 7/a = 1 — §e 6*w,/r*, and considering only the perturbing
potentials (54) and (58). We have then, for the coefficient of &%w,/r?,

$mad. e — $0%® — L0%?
Now, with the value of € in (37),
$mad . ge = 50’a®, and H — 1 — & =0.

Hence the coefficient of 8%w,/r® vanishes, and the term e in (53) has been properly
chosen to satisfy the perturbing potentials (54) and (58). Following the similar
process with the remaining terms of (53), and equating to zero the coefficient of
8wz 4., We have, from (55%), (56), (57),

2k + 1 3m; 1 4_4_2 3g3i=°° B+ ! Ii-1 _
2]c—2m'§_2k—2—1°€(c>—2 ¢ i=2i~zz/c.+2z¢—1M"O’

A\ a\$ize kil it
e[ 3 (A T

or

[4 i:z@—2!k+2!’b—1

By symmetry the condition that the spheroid 4 may be a level surface is

L (A\SITE  p il i
— 1 (%L s(4 7 :
Mr—loe((})—l-g(c) S T L (60)

Multiply both sides of (60) by <a> — ];quﬁ_:_ Y TFT 11, and perform 2 on the

whole, and substitute from (59), and we have

A\2 a\? , [a\37="> k4 7! =1
i =1 (% 3(
my 106(0> 10€<c>2<c> ,.5:2 r—21k+2! r—1

8/4\8r=w i=w r+ 2l k + r! -1 i—1
3y (2) (4 v .
+(2) (0) <0) 7-52 ,52’5-—237'4-2!7'—2!76-%-217”—1 ’b.—lmz. (61)

Now let us write

"kt -1
b ry="3 A l 2
7“=°° r 4+ k4 ! -1 > (6)
[k, o, T| = I
r= 22—1'7+2’r—1’k+2'

so that (61) may be written

me= e (5 + 2oe (7)1 (7) 0 13+ @2 (2) (5) 3 BT ym. (69)

3E2
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Next put
A\2
’)7’l]¢ %_ <_E> #k, M-—- 106( > M]g, . . . . . . (64)
and (63) becomes
0\8 / a\2 0\ [ANS =2
=1 +%<;> (Z) *, P}+('3‘)2<’5> <;> SOy . (69)

We attribute to % in (65) all values from o« to 2, and thus find a series of equations
for the w’s. A similar series of equations holds for the M’s.

We now have to sum the series (62).

Consider the function

L0+ B =1l

1 1 [k+2 E+2. k43
m[(1+3)]”+2"1]_k+2[(1— >—k-2_1:|—k+2[ 11 7+ 21 s 72+:|

—_ 1 ory® kA ! r—l_qgm__w! #—1
Trhxe, Skt =17 T S ky2r—17
Hence
1 )
{k,y}:m[(l—l-ﬁ"”—-l]. Y (1]
Next )
1 1 i1 49 _ 1 di—? r=2 L4yl ity
b+ 2y l'clry 2{7 [(L+ By —1]}= i — Ll deyi™ 2 o k=117
1= E+rli4 r! reo
Ty i1k 2r—1lr+2'7
Hence
: 1 1 a
Ik’%'yl =(]c+2),ys .i_lxd,yi—nQ{'y-i-l[(]‘ +B)k+2_1]} . (67)

The differential in (67) must now be evaluated. We have, by LemsNirz’s theorem,

=72 7 — 921! dr i+l di—-r—-2

di-% . di—
i+ i+ — 1 ") o \—E=2
dfyi—2{‘y+ [(1+18)+ — 1]}-—— d 1,—2’yz+ + 210 g — | dry dfyt r— 2(1 7)
— i1 g TR 71— 2! i+ 1 t+k—r—11 il
=T 5 7 + roo THi—r =214 —¢ + 1! kE+ 1! (1 — y)itk=r
,?’_}_1' 3 3 r={—2 iy
= 7+< y)Ee Téo'”ﬁrg

Substituting in (67), we have

; (1 =i-2 =2+ k—r—1 .
) | [ —r—2
lk’z’7]w6(k+2)t: 1 (1+’8)+ r0 337‘!»5-7”-2!7,'—-7«—!-11,15 i—l!Bl ]'(68)
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The following Tables, computed from (66) and (68), give the values of {£, y} and
|k,2,y| as faras k = 5, and k = 5, 2 = 5.

Table of {k, v}.

{29} =10 +B)*—1]
{89} =410 + B —1]
{&oy=4[1 +B°—1]
B9} =700 + 87 —1]

Table of |F, 4, 7).

k=2,i=2; L[(1+R)t—1]. k=4,i=2; L[(1+pB)E—1]
k=2,9=3; L1 [(1+B) —1]. k=4,i=3; L[1+B)°(1+2B) —1]

k=2,i=4; $[1+B)8—1]. k=4,i=4; 9((1+,e)6(1+33+ 1—/32) 1].
k=21 =5,7r[(1+3)7 1]. k=4,i=5; $[(1+RB)(1+ 18+ 18 —1].
k=3,1=2 ;g[(1+B)5— 1] k=5,i=2; +[(1+p)—1]

k=3,i=3; :[1+R)F1 +48)—1]. k=5,:=3; 2[1+ 871 +18)—1].

k=3,i=4; $[(1+B)5(1 +4B) —1]. k=5i=4;33[(1+BT(1+ 38 +456) —1]
k=3,9=5; [1+B)(1+18)—1]. k=510=5; Z[(1+p)(1+2B+426 +%6)—1]

§ 6. Determination of the Angular Velocity of the System.

The angular velocity of the system must now be determined in such a way as to
annul the outstanding potential of the first degree of harmonics.

Referring to origin o, we have from (85) — w®dw, directly from the rotation
potential ; the remaining terms are #, 4 v;, since the sectorial harmonic term does
not contribute anything.

Thus, taking u, from (32), and v, from (50), we get for the potential

47rA ’w1{ + 3( > igoo PZ_IH

=20—1

P ) )

—_—w

Equating this to zero,

3:202d=A3{1 +%( )3 ]-Pg,—lH'
T =27

e A T o
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And, by symmetry,

3wc? A\Sizeo 41,
—Z—;D_—_as{w—g(;) s il o,

i=2t—1

A\? 2 AN = (0 + 1)2 (454 2) .
e ] o
Add (70) to (69), note that d 4+ D = ¢, and {%5¢ = 30?%/32m, and solve for «? and
we have
3w®

4m A izeit 1

o B S (T H o )
[<§>3+<%>3] o %[<é>5+ (g)5 ](i T; @Sz @Sgi Emi———“i Rl e :;Y)('YFL"“IAZ- + Ty =) )

4 4 C) i=2 i—1

Now let 1+ K denote the factor by which (4/c)*+ (a/c)* is multiplied in (71).
Then, if the two masses were particles, K would be zero, and (71) would simply be
the usual formula connecting masses, mean motion, and mean distance in a circular
orbit. Hence 1 4 K is an augmenting factor by which the value of the square of
the angular velocity must be multiplied if it be derived from the law of the periodic
time of two particles revolving about one another. K, in fact, gives the correction to
KepLERs law for the non-sphericity of the masses.

This completes the solution of the problem, for we have determined the angular
velocity in such a way as to justify the neglect of the harmonic terms of the first
degree in §§ 2 and 4.

§ 7. Solution of the Problem.

We may now collect from the preceding paragraphs the complete solution of the
problem.
In (38) and (53) we have found that there are terms in »/a as follows :—
w, &w,
Jet — e,

Now

hence
wy — L 8w, =22 — 20% + P =1 — 3a?,

and these terms are therefore equal to e (5 — «?/r?).
We note that e = 150%167 = $0%/4m, and that o?/4w is the ratio generally
written m in works on the figure of the Earth. Then, from (17), (38), (53), the

equations to the two surfaces are
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r_ @ AN3iTP 20+ 1 [a\i+! 7\ Wi 8wy g
a_1+€<3 7'2)+<a> i=22 2i—2\c (b 4 1) W_mi_ﬁ“} (72)
; . 2
R _ L X a\$iTe 241 [A\i+ ) W, SWi,
a=1 +€<3 R2>+<A> 2 27}-—2<c> {(H""'L")E—M" iz } J

From (27), (49), (65), wesee that hg, g . o o Fiv vy Mgy Ny v o Nie oy oy g o o o fie - o
are to be found by solving the equations resulting from all values of & from 2 to
infinity in the following :—

hy—1=23 <ﬁ>‘°’ (£, T) + (3) <§>‘°’ <4>‘°’Zs: %, 4, T] }_llik

c c

M= g esle) (@) B T

1 e (e AN e s D) (D)
+arnars®() () X ka2 2y,

a\8 /[ a\2 a\$ [A\Bb=m
pr— 1= %(g) (;1‘) {k, T3+ (3) <6‘> (;) R L&, % T |y~
and symmetrical systems of equations for obtaining the H’s, A’s, and M’s.

With the values found by the solution of these equations we then evaluate K by
formula (71) ; and we have

%e=—3—“’—2=[(4—>3+(§)3](1+1(). N ()

rs (73)

v [4
We are now enabled to find the I's and m’s by the formulz (48) and (64), viz.,

b

Poe(b+ 1) (+2)(5) |

A\? ’
‘ <?) e J
and the symmetrical forms give us the L's and M’s.

Having thus evaluated all the auxiliary constants, (72) gives the solution of the
problem.

It is well known that £ X 8e%/47 is the ellipticity of a single homogeneous mass of
fluid rotating with angular velocity w. Hence the first terms of (72) simply denote
the ellipticity due to rotation in each of the masses, as if the other did not exist.
Now the rigorous solution for the form of equilibrium of a rotating mass of fluid is an
ellipsoid of revolution with eccentricity sing, the value of g being given by the
solution of

(75)

i
I~

[=]

Mk 1

»?
2m

=cotdg[(3 + tan®g)g —3tangl*. . . . . . (76)

* See, for example, THoMsON and Tarr’s ¢ Natural Philosophy’ (8), § 771, with f = tang.
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Hence it will undoubtedly be more correct to construct the surface, of which the
equation is (72), by regarding the part of » under the symbol 3 as the correction to
the radius-vector of an ellipsoid of revolution with eccentricity determined by (76),
where ©?/27 is found from (74).

§ 8. Examples of the Solution.

The principal object of the preceding investigation is to trace the forms of the two
masses when they approach to close proximity ; we shall thus be able to determine
the forms when they are on the point of coalescing into a single mass, and shall
finally obtain at least an approximate figure of the single mass. For this ptrpose we
require to push the approximation by spherical harmonic analysis as far as it will bear.
We shall below endeavour to estimate the degree of departure from correctness
involved by the use of this analysis. The results will, therefore, be worked out
numerically for such values of ¢/u as bring the two masses close together, and it will
appear that the largest value of c¢/a assumed for numerical solution is such that the
surfaces cross; in this case the reality will be a single mass of a shape which it will
be possible to draw with tolerable accuracy.

The computations are facilitated if, instead of assuming ¢ to be an exact multiple of
a, we take ¢® a multiple of a?; that is to say, we shall take 1/y as an integer, and
therefore 1/8 also an integer.

We shall in the first instance suppose the two masses to be equal. In the following
examples, then, we have 4 = a, I'=19, B = 3, and the two masses assume the same
shape.

The computations will be carried through in detail in two cases, viz., when 8 =%,
and when 8=1. The results will also be given for 8= &.

When B=17, y=14, ¢/a =2'8284, and when B=1%, y=1, c/a=2'449. Thus
the distances of the centres apart are 2¢ and 2% of the mean radius respectively.
The numerical details of the two computations may be stated pari pass#, and the
numbers applying to 8 = § will be distinguished by being printed in small type.

In the case of 8=, we have y =14, c¢/a = 26458 ; but only the final result is
given, without intermediate details.

The first step is to compute the values of the several series by means of the Tables
in §§ 2 and 5.

The numerical results are as follows,
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TABLE of (£, ). TasLe of {k, v}.
B=1% B=1 B=3 ‘ g1
k=2 839 1167 h=2 177 | 268
k=3 1433 2:012 k=3 | 190 i 298
=4 2:204 3125 b= 4 205 | 331
k=5 - 3163 4536 k=35 201 { 369
TasLE of [%, 4, y) S ~ TasLE of [k, 1, .|
B=t | p=3 B B=1 | B=1%
k=2, i=2 | 5460 7847 | k=e, i=2 | | 268
k=2, i=3 | 9494 | 13895 k=2, i=3 | 475 | 744
h=2, i=4 | 14875 | 22201 k=2, i=4 | 1024 | 1655
k=2, i=5 | 21780 ’33~190 ‘ | k=2, i=1 1933 | 3229
h=3 i—2 | odob | 13895 | | ke 3, i=2 100 | 208
k=38, i=3 | 16667 | 24969 | - k=3, i=3 519 844
k=3, i—4 | 26384 | 40517 k=3, i=4 | 1137 1-921
k=3, i=5 | 30047 | 61574 k=3, i=5 | 2183 | 3837
k=4, i=2 | 14875 | 22201 k=4, i=2 205 331
k=4, i=3 | 26384 | 40517 h=4, i=3 569 961
k=4, i=4 | 42914 | 66840 h=4, i=4 | 1266 2-233
k=4, i=35 | 63183 | 103372 | k=4, i=5 | 2471 4578 |
h=5 i=2 | 21780 | 33190 b5, i=2 291 | 369
k=5 i=3 | 89047 | 61574 =5 i=3 624 1096
k=5 i=4 | 63183 | 103:372 h=5 i=4 | 1412 2616
k=5 =35 | 95690 | 162:831 k=35 i=5 | 2803 5479

With these values for the series, we have to compute the coefficients of the systems
of simultaneous equations (73). The equations lend themselves more readily to
solution if we consider »; — 1, \; — 1, u; — 1, as the unknowns instead of h; \; w;.
The results are given in the following equations. a

MDCOCLXXXVIL—A, 3 F
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The upper coeflicients correspond to the case of 8 =% ; the lower ones, printed in
small type, to the case of 8= .

hy — 1= 05902 + 00300 (hy— 1) + ‘00033 (hg— 1) + 00004 (b, — 1) + 00001 (h; —1) + ...

‘18516 +01362 *00201 00086 *00007

hy — 1 ="10086 + ‘00522 + 00057 + ‘00008 -+ 00001 + ...
23385 +02412 “00361 -00065 *00012

hy — 1 =-15529 4 00817 + 00091 + 00012 + 00002 + ...
36467 -03854 -00586 *00168 *00021

hy — 1 =-22321 + ‘01196 + 00134 + 00018 + 00003 + ...
*53150 05762 *00891 00165 -00033

A, — 1 = 06400 + 00300 (A, — 1) + 00054 (A, — 1) + 00011 (A, —1) + 00002 (A5 — 1) + ...

‘15158 +01362 00335 -00089 00023

Ay —1=-06677 + -00313 + 00057 -+ 00011 + 00002 + ...
16114 01447 -00361 00098 *00026

A, —1=-06976 + 00327 + 00060 + 00012 + 00002 + ...
17174 01542 -00391 00108 *00029

Ay — 1 =-07297 4 00342 + 00064 + 00013 + 00003 +...
18352 1646 00424 00118 00033

po — 1 = 01184 + -00010 (y— 1) + 00003 (g — 1) + 00001 (s, — 1) + 00000 (s —1) + ...

*02818 00047 -00022 -00008 00003

py — 1 =-01274 + 00010 + 00004 + 00001 + 00000 + ...
*03127 *00052 -00024 -00009 00003

p, — 1 =-01374 + 00011 + 00004 + 00001 + 00000 + ...
03478 "00057 “00028 00011 “00004

py; — 1 =-01482 + 00012 -+ 00004 + 00001 + 00000 + ...
-03879 00064 00032 00013 00004

The solutions of these equations are obviously found by an easy approximation ;
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they are
by = 1-0593 A, = 1:0642 jy = 10118
11377 1-1544 1:0282
hy = 1°1012 \; = 1°0670 s = 1:0127
12382 1-1642 1-:0313
by, = 11559 A, = 1:0700 o, = 10187
1-:3719 1:1750 1:0348
hy = 1:2241 A, = 10732 s = 10148
1:5424 1:1870 1-0388

the small figures corresponding, as before, to the case of 8= ;.
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With these values of the 2’s and N’s, I find

,+1 . — . 5
2 ymi=emiss e O OET0 — vavans ¢ (%) = oosan,
e 1:3005 -1 2:8542 ¢ 01701

the summations, of course, stopping with 7 = 5.
Applying these in (71), we have, when

1+ 02891 1 + 0664
— L AL —
B=L14+ K= 100880 = 1 0380; or, when 8= 3, 1+ K = [ 55 = 10877,
whence
3,
de = Z"i = 08839 X 1:0380 = -09175.
, @ ‘13608 x 1-0877 -1481

Thus the angular velocity of the system has been found.
Next we have

/a\2
—lﬁe(—> = ‘001434,
G/ 00309

Introducing this into (48) and (64) with ithe previously found values of the N'sand p’s,

l, = 0183, m,= 00145, | ' ( hy + 1, = 10776,
0428 0032 i | | 11806

1y = 0306, my = 00145, hg 4 I, = 1°1318,
‘0720 0032 : 1-3100

_ ¥ ; and hence 4

I, = "0460, m, = 00145, hy 41, = 12019,
1089 0032 1-4808

I, = "0646, m; = 00145, By 41, = 1-2887.
1541 0032 L 16965

By taking the differences of 4 4 /, we may conclude that

hg + 1, = 139,
196

and this sixth harmonic term will now be included.

Tt appears from the values of the m’s that the harmonics of the type 8%, , are
practically negligible, excepting the term &%, and that in that we may neglect the
part depending on my,

Now, if » denotes the radius-vector due to the rotation, and & the increase of
radius-vector due to the mutual influence of the two masses, we have

o — 1101 22 4080922 0100~+ 0035 o 0013 N (4
@ 2008 7 0637 T 0252 T 0108 7 0048 7 ‘

3 ® 2
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We next have to consider the values of 7, the radius-vector of the ellipsoid, due to
rotation.
We might compute from the spherical harmonic formula

The results so computed will be compared with the others computed as shown below.

‘The following Table of the angular velocity and corresponding eccentricity e of the
equilibrium ellipsoid of revolution is extracted from TmomsoN and Tarr’s ¢ Natural
Philosophy,” §772 :—

aQ

w?
e o
3 0243

‘0436
) ‘0690
6 1007
7 1887
‘8 1816

From this we find by interpolation that, when 3w?/47 = 09175, e = 472 ; and,
when 8w?/4m = 1481, e = *594.

These, then, are the eccentricities of the ellipsoids whose radius-vector is 7 in the
two cases B=1%, B= 1.
The equations to the generating ellipses are

” 1 — 0806 . r

e ST amsarg 0t BT and = e 6
The following are the computed values of /o for each 15° of 6, the latitude, the

small figures written below appertaining to the case of 8 = §.

0= 0>  15° 30° 45° 60° 75° 90°
B=1: 2 = 10429, 1:0330, 1-0074, 9753, -9461, 9264, 9194
B=1: 1-075, 1-056, 1-009, 953, 906, ‘875, ‘865

B=}:Z=10382, 10305, 10096, 9809, -9522, 9312, -9235
B=1% 1:0616, 1-0490, 1:0154, ‘9692 9230, -8892, 8768
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The greatest discrepancy occurs when 8 =1 and # = 90° and the difference

between the two results is -5 of either. It follows, therefore, that in drawing the
figures it is not of much importance which results we take. But, as above remarked,
the radius-vectors computed from the true ellipsoidal figure are the more correct. ”

The formula (77) for &r consists of a series of zonal harmonics. The pole of
symmetry of these harmonics lies in the equator of the ellipsoid of revolution defined
by 7, and is that point of each mass which lies nearest to the other. Then, denoting
by 6 co-latitude estimated from this pole, I find that the numerical values of & for
each 15° of 0 are as follows :—

6= 0° 15° 30° 45° 60° 75° 90°
B=1: %”: + 165, + ‘141, + ‘084, 4 019, —-031, — ‘055, — 056,
B=1 4280, 4257, 4142, +°024,  —-060,  —-094,  —-092,
105° 120°  135° 150° 165° 180°
— 037, —'004, + ‘032, + ‘065, - ‘088, -+ 096
— 059, — 002, + 055, + 106, . 4+ ‘143, + 155

These have to be combined with 7, so as to give the radius-vectors of the mass of
fluid along two sections, one perpendicular to the axis of rotation (which may be
called the equatorial section), the other through the axis and the two centres (which
may be called the section through the prime meridian). " Taking the case of 8 = 7, we
add the successive values of 87 to the equatorial value of », viz., 1-043, and thus find
the equally-spaced radius-vectors along the equatorial section. Next we add the
successive values of &r to the corresponding values of #, and thus find the equally-
spaced radius-vectors along the prime meridian. The results are as follows :—

0= 0° 15° 30° 45° 60° 75°  90°

S :
- Equator, 71—1;—1 = 1208, 1-184, 1126, 1:062, 1:012, 988, 987,
7" Pr. Merid. = 1208, 1-174, 1:091, 994, ‘915, ‘871, °863,

105°  120°  135°  150° 165°  180°
1:006, 1-039, 1075, 1-108, 1-131, 1139
‘889, 942, 1008, 1072, 1-121, 1139

These results apply to the case of 8 =1; those for 8 =} are found in the same
way, and are given in the figures referred to below.

When B =1 the distance between the centres is given by c¢/a = 2'828. I have
also worked out the case of 8 = %, although none of the numerical details are given
here.

In figs. 2, 8, 4, and 5 (Plates 22 and 23) are exhibited the figures which result
from some of these computations.
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Figs. 2 and 3 refer to 8= ¢, 4 and 5 to that of 8 = ¥, and the numerical values for

= +, given above, make it easy to draw a figure for 8 = +. '

Since in these cases the masses are equal, the two halves of the figure are the
images of one another. The numerical value of each radius-vector is entered on the
plates ; and other numerical data and explanations are given.

Figs. 2 and 3 correspond to 8 =%, and here the figures as computed cross one
another. The reality must, therefore, be two bulbs joined by a stalk, like a dumb-
bell. The dotted lines have been filled in conjecturally, and must show pretty closely
what that single figure, formed by the coalescence of the two masses, must be.

Figs. 4 and 5 show in a similar manner the case of 8= §, and here the two masses
are separate, although nearly in contact. When 8 =1 the shapes present similar
characters, but are wider apart. ’

§9. On the Use of Spherical Harmonic Analysis as a Method of Approximation.

Spherical harmonic analysis gives less accuracy as the bodies considered depart
more and more from spheres. How far, then, do our results present an approach to
accuracy ¢ To answer this question, we have to find how nearly the potentials at the
surfaces of these figures may be computed from the spherical harmonic formulee.

It would be laborious to make an accurate computation of the potential, and it
fortunately appears to be unnecessary to do so, since a sufficient answer may be
obtained in another way.

The potential of an ellipsoid of revolution may be computed either rigorously or by
harmonic analysis. With a certain degree of eccentricity the approximate result will
agree badly with the rigorous one.

If the ellipsoid consists of a fluid of unit density, there is a certain angular velocity
which makes it a level surface. If o be that angular velocity, then we know that
the spherical harmonic solution would give 1 — 15w?/167 as the ratio of the minor to
the major axis. If then ¢, a, are the rigorous values of the minor and major semi-axes,
the harmonic approximation is good if ¢/a does not differ much from 1 — 150%167.

If we denote by 1 — u the factor by which the approximate value of the ratio of
the axes is to be multiplied in order to obtain the rigorous value, we have

=1 — ___ﬂ___ ,
r= 1 — 150%/167
and p may be regarded as a measure of inaccuracy.

A table of the values of «?/2m, corresponding to various eccentricities
=,/ (1 — (¢/a)?), is computed from the transcendental equation in Tuomson and
Tarr’s < Natural Philosophy,’ § 772.  From these I compute as follows :—
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2 2

e= (1 — 2,) -3 11— 115;;; Difference. %
-1 9949 9949 0000 Large
2 ‘9798 9799 ‘0001 9799
'3 9539 9544 0005 1909
4 ‘9165 9182 ‘0017 540
5 8660 8705 0045 193
6 8000 8111 ‘0111 73
7 7141 7399 102538 29
-8 6000 6595 10595 11'1
‘9 4359 5869 ‘1510 39

The measures of inaccuracy oorrespondihg to the values of e in the first column, or
the values of ¢/a in the second, are the reciprocals of the numbers in the last column.
We thus see that there is still a considerable degree of approximation when e =8,
or when the ratio of the axes is 8 to 5, for the measure of inaccuracy is +; but for
e = "9 the approximation is bad. ‘

Now the shapes of certain egg-like bodies have been computed by the spherical
harmonic method, and it seems safe to assume that the approximation has given
about the same degree of accuracy as would hold in the case of an ellipsoid of
revolution whose minor axis bears to its major axis the same ratio as the shorter axis
of the egg to the longer.

Turning now' to our computation, and considering only the more elongated or
meridional sections, we see that, when 8 = %, the longer axis is 1'355 4 1'230 = 2585,
and the shorter 2 (1 — *227) = 1'546 ; and the ratio 1-546 : 2'585 is *6, which corre-
sponds to the measure of inaccuracy 1/11°1. It might, however, be more legitimate
to adopt two different measures, and at the pointed end of the egg to take the ratio
773 :1'355 = *57, which will correspond to a measure of inaccuracy about % ; and at
the blunt end to take the ratio 773 :1:230 = *63, which would correspond to a
measure of inaccuracy % or 4.

In the case of 8 =1 the two masses cross one another, and the result has been
used to give an approximate picture of the dumb-bell figure of equilibrium. We now
see that even in this case there is a sufficient degree of approximation to give a very
good idea of the accurate result.

In the case of the meridional section, where 8 = 1, we have for the ratio of axes at

1 — 1717 2
the pointed end of the egg B 271‘2 18278159

— 1717 -8283
11746~ 11746

In the case of 8 = 5 the similar figures are, for the pointed end

= 65, and measure of inaccuracy about

s and at the blunt end_ = 71, and measure of 1 1naccuracy 25

—137__ 863
1208 — 1208

— 137 __ 863
and measure of inaccuracy about -4 ; and for the blunt end ‘1713 o = 1139 76, and

72,

measure of inaccuracy perhaps about %
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It thus appears that as the bodies recede the accuracy increases with great rapidity,
and in the two cases considered last it is hardly necessary, from a physical point of
view, to consider greater accuracy than that attained.

It must be remarked, however, that this way of estimating the degree of inaccuracy
must necessarily give much too unfavourable a view.

If we have a single mass of fluid departing considerably from the spherical form, it
is clear that the potential computed on the hypothesis of a layer of surface density on
the true sphere will come to depart largely from the potential at the surface of the
fluid. If, however, we compute the potential of such a mass at points a little remote
from the surface, the approximation will be much closer. Now, where there are two
masses, as in our problem, the potential at the surface of either mass consists of two
parts, one due to the mass itself, the other due to the other mass. As regards the
first of these two parts, the above criterion is applicable, but as regards the second
i)é,l‘t it gives too unfavourable a view.
~ Now in the case of the single mass the deformative forces due to centrifugal force
are considerably vitiated by computation at the spherical surface instead of the true
surface, whilst in the case of the two masses the tide-generating forces are computed
with greater accuracy than is shown by the criterion,

Under these circumstances it has appeared worth while to give another figure
below, which, judged by the criterion, would be no approximation at all.

The reasons for giving this figure will be stated when we come to it.

§ 10. To find the Moment of Momentum of the System.

Rotating figures of equilibrium are classified according to the amount of moment of
momentum with which they are endued. It is, therefore, interesting to determine the
moment of momentum of the systems now under consideration.
 We must begin by finding the moments of inertia of the two masses. Let 81, &,
denote the moments of inertia of the shells of zero mass lying on the mean spheres of
radii 4, a. |

Then

& =[] (v + 22) (r — @) &* dw,

where dw = sin § df d¢, and where the integral is taken throughout angular space.
- Now e B

w &%

9 22,0y 10 (W 19"
?/—I—Z—-ga—l-g(l/(_, "2_7,2>’
and 7 — @ is the sum of a series of harmonics. Then,in consequence of the properties
of harmonic functions, we need ounly consider the harmonics of the second degree in
r —a, and

i (5 072 2 T (2 2 129
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wy\2 8%, \2? Se?
(o=t [ ammtrn =i

and the moment of inertia of the mean sphere is %wa’; hence, if we write

But

He? A\3

F= o+ 4(2) B0+ 1) + 3m]
50? 3

F=+4(0) BUL+ L) + 34],

the moments of inertia, 7 and I, are given by

i = foma (14 1),
I = 8a07 (1 + F).

2= [ 4o

Hence the sum of the rotational momenta of the two masses is

We already have in (71)

(+Do=1(7) @ a+n+20+ N2 + () ]a+x)y.

The whole system revolves orbitally about the centre of inertia with an angular
velocity o : hence the orbital momentum is

s [Po d® + AP0 D).
But
_ A D=- afe
R +A3’ T W+ 48
Hence the orbital momentum is
471' ASCLS N
prl
and this is equal to
WBA3H

(%’;7")%i €A3 + a?yi (1 + K)}x'

It will be convenient to refer the mass to the radius of a sphere of the same mass
as the sum of the two. '
Let b be the radius of sueh a sphere ; then

B = A% 4 ob.

Thus the whole moment of momentum is

s a7 e (4 0 G o+

We shall therefore compute the coefficient of (37)? 0%
MDCCCLXXXVIL.—A. 3¢
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Computing from this formula, I find the following values of the moment of
momentum in the case where the masses are equal, when

1
i

4\t

(—?) b’ X 468
X 472
X 482

™ W ®
I
o

G|
-

Now I find by a numerical investigation® that, if we imagine a mass of fluid equal
to 47b® rotating in the form of a Jacobian ellipsoid of three unequal axes, then, when
the momentum is (%) 1% X "392, the axes of the ellipsoid are 1-8980, 0-8113b, 0°6490 ;
and, when the momentum is (%) b° X *644, the axes are 3:1360, 05860, 0:545b.

Tt seems probable, then, that the Jacobian ellipsoid of mass §7b® becomes unstable,
at least as soon as when the moment of momentum is somewhere about (§)'b% X 5.

Tt may be worth mentioning that the greatest moment of momentum for which the
ellipsoid (of mass £#b?) is stable, when it is a figure of revolution, is (§7)!b® X -3038.

§ 11. On the Conditions under which the two Masses may be close to one another.

If at any point on the surface of either mass the sum of the tide-generating and
centrifugal forces is greater than gravity, it is obvious that equilibrium cannot subsist.
Tt is also clear that, if this condition is to be found anywhere, it will be at that point
of the smaller mass which lies nearest to the larger mass. Hence, in order that the
system may be a possible one, we must satisfy ourselves that at that point gravity of
the body itself exceeds the sum of the tide-generating and centrifugal forces.

To determine the limitations of size and proximity of the smaller of the two
masses to a high degree of approximation would be very laborious, and we shall,
therefore, content ourselves with a rough investigation, to be explained below.

We shall now find approximations for the shapes of the two masses and for their
potentials.

The radius-vector of cither mass and the potential may be expanded in powers of
afe and A/c, and a term involving ¢* in the denominator will be referred to as being
of the nth order. :

Now the term of the highest order which can be included without the introduction
of great complication is the 7th, and we shall content ourselves with that term.

The expressions for the various parts of the potential have been developed above,
but it may be observed that the terms involving the first order of harmonics may be

# ¢Roy. Soc. Proc.,” vol. 41, 1887, p. 319.
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omitted, since’ they are subsequently annulled by a proper choice of the angular
velocity.
From (22-i.) we have

e e )

The last term in the development to the 7th order is that involving w, Then it is
clear that we require %, correct to the 4th order, 4, to the 3rd, and so on. But (25)
shows us that the 4’s are equal to unity to the 4th order inclusive. Hence, in the
above, all the A’s may be treated as unity.

Again (22-ii.) when written in reference to the origin o affords other terms, in
which all those included under 33 are of the 8th and higher orders, and negligible ;
and the rest (with omission of the first harmonic term) gives

TR R

Thus this first part of the potential is, to the 7th order inclusive,

dmra® a , 4w ABE=T [g\k 3 ‘a\k+1 7\%) w,
3 + 3¢, kEz <c> {2 k—=1) (1) + <a> } e
Next, from the expression for Q in § 3, we have a term in the potential due to

rotation + Jw*? The remaining terms due to rotation will be taken up later.
From (71) we see that, to the 7th order inclusive,

= (4

Hence ®and e are of the 8rd order; and from (48) and (64) it follows that the
factors by which the I's and m’s are derived from the \'s and p’s are of the 5th order.
And, since the N's and u’s only differ from unity in terms of the 5th order, it follows
that the s and m’s are of the 5th order. Then (41) and (56) show us that all the
terms in [ aud m are negligible.

The first set of terms due to rotation and to the corresponding deformation are
given in (39) and (43), and together contribute

a\3 »\27 w,
1,.2.213 2
e | 5(=) + (=) |5
6 [2 <7"> <a> } 7"2

The second set of terms due to rotation, and to the corresponding deformation, are
given in (54) and (58), and together contribute

a 3 7 2_) Sw
9.2 (- 1 ()
Pev— —w CL A .

362



http://rsta.royalsocietypublishing.org/

|
P

A

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

)
A

a
fa \

/
S

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

412 PROFESSOR G. H. DARWIN ON FIGURES OF

Hence, to the 7th order inclusive, we have

= e O
eI

Now the expression (72) for the radius-vector of the mass o to the same order of
approximation gives us

_ bo? [wy — §8%w, AN3EZ0 2% + 1/a\F—2 W
—1+14€3.7r<a 72 >+ c) EZQZC—ZKO rt’

and a similar expression for /4.

To determine the inward force at the pole of the mass @, where it is nearest to the
mass A, we must evaluate — dV/dr, and in the first term substitute the above
expression for 7, and in the remaining terms put » = a; also at this pole wy/r* =1,
and &6%w, = 0.

Then, differentiating (78),

AV dwac®  Adma [A\BPZS [a\E72[ 3 (k + 1) k}
T dr T3 7«2_T<c> ,Ez(c> { : 2(&-1)"'

3.3
——%wg‘a-—%ﬁ-w%ﬁ{-— vv2~——|-2}- e e (79)
But at the pole
bra _dma o dwo (A5 1 (0
3 2 3 6% 3 \e)  Ze k=1\¢)

Substituting this for the first term of (79), we have

dr 3 ) r=2 ¢
But
47ra 3 a\3)
Dy e iy hod
wa="3(2) + () ]
hence
av _ 4
dar 1

Fme
3
_ 4ora

:
3

L=l + (] (st + 2 (2 ()
[

434° + 130> _ (AN} [0 | o (VP | gy (@)’ lﬁgé}
- 12¢8 —<:>{§c+2 ¢ 5 ¢ + ¢ )


http://rsta.royalsocietypublishing.org/

\
A

/%

A
A \

A

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

)

a
fa \
A A

y i
Y 4

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

EQUILIBRIUM OF ROTATING MASSES OF FLUID. 413

Thus the criterion of the possibility of equilibrium is that

O=1— @A};}"f _ <§>3{%§ + 9 <%>2+ 1 <%>3+ L2§<“;>4} .. (80)

should be positive.
But the radius-vectors of the poles are

= e[l (T 1)+

=35}
RS
SRR
~——
+"

Jrst

@
TN
S | R
N——
=)

[

Olw
TN
S|
~—x
| I

Therefore
r4+R=a+ 4+ 19 3[(7OL—|— A) A3+ (o + 7A)0L3]—|—~ A%a® (4 + a)

4 A% 490 (a 4 A) + 105 L3057 (02 + 42)

Now the interval between the two masses is ¢ — (r 4+ R) ; hence, if the two masses

are just in contact,
o= a+t A+ [(Tat A) 45+ (ot T4)] + L A0 (4 +a)

+ ;A?’ab' + @;A%ﬁ( a+ 4)+ 1, 7A3a3 (a® 4+ 4%. . (81)

In order, then, to test whether equilibrium is still possible when the two masses are
just in contact, it is necessary to determine ¢ from (81) ; and then, substituting in (80),
find whether C is positive or not.

The solution of an equation

c=atd 41424042,

and the determination of

can only be performed by trial and error.
Now suppose that the solution is ¢, + Sc, where 8¢ is small ; and that

a=at 5 + + Oi=1—5—n"
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Then it is obvious that

Sf - 6 — 6

¢ ¢ + i,(g 4 -lry n

and

5C = < +——+ ) and  C=C 4+ 5C

0

It is not hard to find an approximate solution ¢, by trial and error, and the correct
results may then be found thus.

Consider the case where the two bodies are equal to one another, and put & = 4 = 1.
The equations then become

13

C—2+3c%+2c4+ +405T5c7

By trial and error we find ¢ = 2'585, C = <+ *557.

From this we conclude that equilibrium still subsists when the two masses are in
contact.

When a = 4 =1,¢= 2535, we have y = (a/c)* = 533, and B = vy/(1 —y) = +- 143
Our figures showed that when 8 = § the two masses were nearly in contact, and when
B = ¢ they crossed.

This result is, therefore, in accordance with the figures.

Next pass to the case of an infinitesimal satellite, and suppose a mﬁmtely small
compared with 4 and ¢, and that 4 = 1. The equations are

c=1+ 1268
43

Y _ B
¢=1 12¢

The solution of the first equation is ¢ = 1'226, and this value of ¢ makes C= — 94,
Hence we conclude that an infinitesimal fluid satellite cannot revolve with its surfuce
in contact with its planet.

C vanishes when ¢ = ($3)} = 1'89. Hence it appears that the nearest approach of
the infinitesimal satellite to the planet is 1'89 mean radii of the planet. The nature
of the approximation adopted is, however, such that in reality the satellite must
lie further from the planet than this, perhaps at two radii distance.* The satellite and
planet of which we here speak are, of course, supposed to revolve as parts of a rigid

* [See RocuE, ¢ Montpellier, Acad. Sci. Mém.,” vol. 1, 1847-1850, p. 243 (added Oct. 5, 1887).]
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body. Now, if for equal masses equilibrium still subsists when the two masses are in
contact, whilst for infinitesimal mass of one equilibrium is impossible with the masses
in contact, it follows that for some ratio of masses equilibrium can just subsist when
they are in contact. '

The question, therefore, remains to determine this limiting ratio of masses.

I find, then, that when @ = 1, 4 = 34, we have

¢ =4'44[225684] ¢34 [194945]c~*4[2:07156] c54+[2:37619] ¢~0 ++[2:80737] ¢,
C=1—[215205]¢%—[2'13850]c™*—[2:24765]c™® —[2'33480] ¢~ —[2:40735] ¢,

the numbers in [ ] being the logarithms of the coefficients.
The solution of this is ¢ = 557, which makes C'= — "006.
Again, when a = 1, 4 = 83, we have

c=4'3+4[221556] ¢+ [1'91853] ¢+ [2:03266] ¢ =5 +[2:82731] ¢~0+ [2:74467]c7,
C=1—[211847]¢~3—[209961] ¢~ — [2:20876] ¢~5 —[2:29591] ¢~ —[2:36846] 7,

the solution of which is ¢ = 545, which makes C'= 4 *010. Since (3'4)* = 39'3, and
(3°3)° = 85°9, it follows that the ratio of the masses in the first case is 1:39'3, and in
the second 1 : 85°9.

From this it appears that when the ratio of the masses is about 1 to 38 equilibrium
is still just possible when the two masses touch.

It must be borne in mind, however, that the nature of the approximations adopted
in this investigation is such that the results in this limiting case are only given very
roughly, and it is certain that actually the limiting size of the smaller of the two
masses must be greater than as thus computed.

We can only conclude that the limiting case occurs when the ratio of the masses is
about 1 to 30, or the ratio of the radii about 1 to 3.

There is one other case which it is interesting to consider, namely, to find the
limiting proximity of the Moon to the Earth, both bodies being treated as homogeneous
fluids of the same density, revolving as a rigid body.

The case of Moon and Earth is well represented by « =1, 4 = 4-333; for this
gives 1 to 81'35 as the ratio of the masses. With these values I find

O =1—[2:46626] c~°— [2:45443] c~*—[2:56858] ¢ =5 — [2'65073] ¢ —[2:72328] ¢ 7,
and
r+ R = 5333 4 [259898] ¢=* + [2:24358] c~* + [2:38748] ¢ 5 4 [2:77563] ¢~

+ [3-32042] ¢~7.

Now ¢ = 70 will be found to make C vanish, and, with this value of ¢, ¢ — (r + R)
= *414.
If A be 4000 miles, ¢ = 6500 miles, and ¢ — (r 4+ R) = 380 miles,
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Thus, as far as this investigation goes, it appears that when the fluid Moon is on the
point of hreaking up from stress of tidal and centrifugal forces the distance between
the centres of Moon and Earth is 6500 miles, and the shortest distance between the
two surfaces is 380 miles.

This result must, however, from the nature of the approximation, be an under—
estimate of the distances.

The whole of the present section has been suggested by a pamphlet by Mr. JAMES
Noran* in which he criticises some of my previous papers. 1 have commented
elsewhere on his criticisms.t

§12. On the Case where the two Masses are unequal.

The results of the previous section point to a very remarkable limitation to the
possibility of approach of two masses of unequal size. It has, therefore, seemed worth
while to consider this case numerically, and a case is therefore chosen which shall
approach near to that which we know is the limit of possibility. I choose, therefore,
a =1, 4 = 3, which makes the ratio of the masses 1 to 27, and ¢ = 58, vshlch brings
the protuberances into close proximity.

The numerical details are omitted, but figs. 5 and 6 (Plate 23) give the results, the
numerical values of the radius-vectors being, as before, entered on the figure.

The elongation of the smaller mass is so extreme that it is obvious that, rigorously
speaking, the spherical harmonic approximation must be considered to break down.
Nevertheless, I conceive that these curious figures may be held to indicate the general
nature of the true result.

It is remarkable that the smaller mass exhibits a marked furrowing round the
middle. This seems to indicate that such a system tends to break up by the separa-
tion of the smaller mass into two parts. ‘

§13. Summary.

The intention of this paper is, first, to investigate the forms which two masses of
fluid assume when they revolve in close proximity about one another, without relative
motion of their parts ; and, secondly, to obtain a representation of the single form of
equilibrium which must exist when the two masses approach sonear to one another as
Jjust to coalesce into a single mass. ’

When the two masses are far apart the solution of the problem is simply that of the
equilibrium theory of the tides. Each mass may, as far as its action on the other is

* ¢ Darwin’s Theory of the Gtemesis of the Moon.’ Rosrrrson, Melbourne, Sydney, Adelaide, and
Brisbane, 1885.
t ¢ Nature,” February 18 and July 29, 1886.
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concerned, be treated as spherical, and the tide-generating potential is given with
sufficient accuracy by a single term of the second order of harmonics. As the masses
are brought nearer to one another, this approximation ceases to be sufficient, terms of
higher orders of harmonics become necessary to represent the potential adequately,
and the departure from sphericity of each mass begins to exercise a sensible deforming
influence on the other.

When the departure from sphericity of one body produces a sensible deformation in
the other, that deformation in its turn reacts on the first, and thus the actual figure
assumed by either mass may be regarded as a deformation due to the primitive
influence of the other mass, on which is superposed the sum of an infinite series of
reflected deformations.

But each mass is deformed, not only by the tidal action of the other, but also by its
own rotation about an axis perpendicular to its orbit. The departure from sphericity
of either body due to rotation also exercises an influence on the other, and thus there
arises another infinite series of reflected deformations. It is shown in this paper how
the summations of these two kinds of reflections are to be made by means of the
solution of three sets of linear equations for the determination of three sets of
coefficients.

The first set of coefficients are augmenting factors, by which the tides of each order
of harmonics are to be raised above the value which they would have if the perturbing
mass were spherical. It appears that, the higher the order of harmonics, the more do
these factors exceed unity.

The second set of coeflicients correspond to one part of the rotational effects. They
appertain to terms of exactly the same form as the tidal terms, and in the final result
the terms to which they apply become fused with the tidal terms. These terms are
the zonal harmonics of the several orders with respect to the axis joining the centres
of the two masses. ‘

The third set of coeflicients correspond to the remainder of the rotational effect, and
they appertain to a different kind of deformation. These deformations are represented
by sectorial harmonics involving cos 2¢, where ¢ is azimuth measured from the plane
passing through the axis of rotation of the system and the centres of the two masses.
That term of this set which is of the second order of harmonics, and which represents
the ellipticity of either mass augmented by mutual influence, is the only term which
is considerable, even when the two masses are very close together ; but the existence
of the other harmonic deformations of this class is interesting. We may say, then,
that all the tides of either mass are augrmented above the values which they would
have if the other mass were spherical ; that the ellipticity corresponding to rotation is
augmented ; and that the deformation due to rotation is no longer exactly elliptic-
spheroidal.

The angular velocity of the system is found by the consideration that the repulsion
due to centrifugal force between the two masses shall exactly balance the resultant

MDCCCLXXXVIL—A., 3 H
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attraction between them. If the masses were spherical, the square of the orbital
angular velocity, multiplied by the cube of the distance between the centres, would be
equal to the sum of the masses. When the masses are deformed, however, this law is no
longer true, and the angular velocity has to be augmented by a factor a little greater
than unity, which depends on the amounts of the deformations.

The theory here sketched is applied above numerically to several cases, and the
results will be found in the preceding paragraphs. We shall first consider the cases
where the two masses are equal to one another.

In the first example (8 = %) solved numerically, the dlstance between the centres
of the two masses is 2'83 times the mean radius of either of them. The two bodies
are found to be elongated until they approach near to one another; but, as the
character of the distortion is better illustrated in a subsequent case, the result is not
given graphically. All the data, however, are found which will enable the reader to
draw the figure if he should wish to dc so.

In the next example (8 = §), with the masses still equal, the distance between the
centres is reduced to 2:646 of the mean radius of either. The result of the solution is
illustrated by two figures. In fig. 4, Plate 22, the section of the masses by a plane
perpendicular to the axis of rotation is shown, and in fig. 5, Plate 23, we have the
section by a plane passing through the axis and the centres of the two masses. On
both figures are inscribed the values of the radii for each 15° of latitude in terms of
the mean radius as unity, and the mean spheré, from which the distortion is computed,
is marked by a short line on each radius. The elongation of the masses is, of course,
considerably greater in the section through the axis than in the other section. Fach
- mass is shaped somewhat like an egg, and the small ends face one another and come
very nearly into contact.

In the headings to the figures, amongst other numerical data, are given the square
of the angular velocity and the angular momentum of the system. The density of
the fluid being unity, the angular velocity o is given by the value of w?/4s ; this is
the function of angular velocity which is usually given when reference is made to figures
of equilibrium of rotating fluid, such as the revolutional or Jacobian ellipsoids of
equilibrium. The moment of momentum of the system is given by reference to the
angular velocity of a sphere, of the same mass as the sum of our two masses, rotating
so as to have the same momentum. If, in fact, b be such a length that a sphere of
fluid of that radius has the same mass as our system (so that b® = a® + 4%), then the
moment of momentum is given by a number w in the expression (§m)* b® X w. By this
" notation the angular velocity and moment of momentum are made comparable with
the results given in a previous paper® on the Jacobian ellipsoid of equilibriam.
From that paper the following table of the axes, angular velocity, and moment of
momentum of several solutions of JAcoBI's problem is extracted.

* ¢ Roy. Soc. Proc.’, vol. 41, 1887, p. 319.
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JAacoBrs Ervripso1ps.

Axes. Ang. vel, Mom.
Greatest Mean Least 9
a b c il ®
b b b or
1 11972 1-1972 6977 09356 80375
2 1-279 1-123 696 093 306
3 1-383 1:045 692 0906 3134
4 1-601 924 677 *0830 *3407
5 1-899 ‘811 649 0705 *3920
6 2:346 702 607 0536 4809
7 3136 586 ‘545 0334 644
8 504 45 44 ‘013 1-016
9 0 00 ‘00 000 e

In figs. 4 and 5, Plates 22, 23, 0*/4# is *038, and the momentum u is *472. On com-
parison with the Table of Jacosr’s ellipsoids, we see that this corresponds with a con-
siderably slower rotation than the 6th solution, and nearly the same moment of
momentum.

In the next case the two masses are still closer (8 = 1), the distance between the
centres being only 2'449 times either mean radius. The result is illustrated in
figs. 2 and 3; the explanation of figs. 4 and 5 serves, mutatis mutandis, for these
two figures also.

This case is interesting because the masses have approached so near to one another
that they partially overlap. Two portions of matter cannot, of course, occupy the
same space, and the continuity of figures of equilibrium leads us to believe that the
reality must consist of a single mass of fluid. In figs. 2 and 3 conjectural dotted
lines are drawn to show how it is probable that the overlapping of the two masses is
replaced by a neck of fluid joining them. The figures as thus amended serve to give
a good representation of the single dumb-bell shaped figure of equilibrium.

The angular velocity is here given by w?/4m = 049, and the moment of momentum
by *482. In the sixth entry of the Table of Solutions of Jacosr's problem we find
o*/4m = 0536, and the moment of momentum p = *481. This ellipsoid has, then, the
same moment of momentum, and only about 4 per cent. more angular velocity, than
our dumb-bell. It has seemed, therefore, worth while to mark (in chain-dot) on
figs. 2 and 3 the outline of this Jacobian ellipsoid of the same mass as the dumb-
bell. The actual vertex of the ellipsoid just falls outside the limits to which it was
possible to extend the figure.

In the paper above referred to it is shown how the energy of the Jacobian ellipsoid
is to be computed. If we denote the kinetic energy by (4m)*b® X ¢, and the intrinsic
energy by (§7)°b® X (¢ — 1),* then it appears that in the case of the ellipsoid drawn
in these figures e = "0964, ¢ = 4808, and the total energy £ = e + ¢ = "5772.

* The intrinsic energy being negative, it is more convenient to tabulate ¢ a positive quantity.

3 H 2
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Now in the case of our dumb-bell figure it appears, from calculations referred to in
the Appendix, that e='0925, ¢ = 4873, and £ = '5798. Hence in the dumb-bell
figure the kinetic energy is less, but the intrinsic energy is so much greater that the
total energy is about a half per cent. greater. These numbers are, of course, computed
from the approximate formulse, and must not be taken as rigorously correct for the
dumb-bell figure of equilibrium.

With reference to a figure of transition from the Jacobian ellipsoid, Sir WirLiiam
TaoMsoN has remarked :—*

“We have a most interesting gap betweéen the unstable Jacobian ellipsoid, when
too slender for stability, and the case of smallest moment of momentum consistent
with stability in two equal detached portions. The consideration of bow to fill up
this gap with intermediate figures is a most attractive question, towards answering
which we at present offer no contribution.” t

Figs. 2 and 3 are intended to form such a contribution, but it is certain that the
matter is far from being probed to the bottom.

M. PorNcARrE has made an admirable investigation of the forms of equilibrium of a
single rotating mass of fluid, and has especially considered the stability of Jacosr’s
ellipsoid. ] He has shown, by a difficult analytical process, that when the ellipsoid is
moderately elongated (he has not arrived at a numerical result) instability sets in by a
furrowing of the ellipsoid along a line which lies in a plane perpendicular to the
longest axis. It is, however, extremely remarkable that the furrow is not symmetrical
with respect to the two ends, and thus there appears to be a tendency to form a
dumb-bell with unequal bulbs.

If M. PoincARrE's result shall appear to be not only true, but to contain the whole
truth concerning the mode in which instability of the ellipsoid supervenes, then there
must be some other transitional form between the unsymmetrically furrowed Jacobian

* TruomsoN and Tarr’s ¢ Natural Philosophy,” 1883, § 778" (v).

T In 778" (g) he remarks that “a deviation from the ellipsoidal figure in the way of thinning it in
the middle and thickening it towards the end would, with the same moment of momentum, give less
_energy.”” I conceive that the energy referred to throughout this paragraph is kinetic only, and we have
seen that the kinetic energy is less for the dumb-bell than for the ellipsoid.

[If we write U for a quantity proportional to the excess of kinetic above intrinsic energy, so that
U = ¢+ (1 — 1), then figures of equilibrium are to be determined by making U stationary for variations
of the parameters involved in it. This course is actually pursued in the Appendix below, the function
(viii.) being, in fact, this U; and the variations of it, being made stationary, afford a controlling solution
of the problem of this paper. The similar method may easily be applied to the case of Jacost’s ellip-
soids. TFrom this point of view the interesting function to tabulate is ¢ 4+ (1 — ©), and we observe that
in the case of the Jacobian ellipsoid referred to on the last page it is *6052, and for the dumb-bell it is
‘6156. Ts not the energy referred to by Sir W. TuomsoN this function U? (Addition to foot-note,
dated October 10, 1887.)]

1 ¢ Acta Mathematica,’ 7, 3 and 4, 1885.
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ellipsoid and the dumb-bell ; except, perhaps, in the case where the two bulbs pass on
to two masses of a definite ratio.

M. Poixcar®’s work seemed so important that this paper was kept back for a year,
whilst I endeavoured to apply the principles, which he has pointed out, to the dis-
cussion of the stability of the two masses. The attempt, which is given in the
Appendix, is apparently abortive, on account of the imperfections of spherical harmonic
analysis when applied to bodies which depart considerably from the spherical shape.

We must, therefore, leave this complex question in abeyance, and merely point to
the Appendix as an example of the method which must almost certainly be pursued
if this problem is to yield its answer to analysis.

Allusion has just been made to the imperfection of spherical harmonic analysis, and
this brings us naturally to face the question whether that analysis may not have
been pushed altogether too far in the computation of the figures of equilibrium under
discussion. This question is considered in § 9, and a rough criterion of the limits of
applicability of this analysis is there found. From this it appears that even in the
cases of figs. 2 and 8 the result must present a fair approximation to correctness.
The criterion, indeed, appears to be such as necessarily to give too unfavourable
a view of the correctness of the result. 4 '

The rigorous method of discussing the stability of the system having failed, certain
considerations are adduced in § 11 which bear on the conditions under which there is
a form of equilibrium consisting of two fluid masses in close promixity. It appears
that there cannot be such a form with the two masses just in contact, unless the
smaller of the two masses exceeds in mass about one-thirtieth of the larger.

If we take into consideration the fact that the criterion of the applicability of
harmonic analysis is too severe, it appears to be worth while to find to what results
the analysis leads when two masses, one 27 times as great as the other, are brought
close together. The numerical work of the calculation is omitted, since the numbers
can only represent the true conclusion very roughly; but the result is illustrated
graphically in figs. 6 and 7, Plate 23. These figures can only serve to give a general
idea of the truth, but the form into which the smaller mass is thrown is so remarkable
as to be worthy of attention. The deep furrow round the smaller mass, lying in
a plane parallel to the axis of rotation, cannot be due merely to the imperfection
of the solution ; and it appears to point to the conclusion that there is a tendency for
the smaller body to separate into two, just as we have seen the Jacobian ellipsoid
become dumb-bell shaped and separate into two parts.

In this paper, indeed, we have sought to trace the process in the opposite direction,
and to observe the coalescence of two masses into one. The investigation is comple-
mentary to, but far less perfect than, that of M. PoiNcarg, who describes the series
of changes which he has been tracing in the following words :— ‘

“ Considérons une masse fluide homogene animée originairement dun mouvement
de rotation ; imaginons que cette masse se contracte en se refroidissant lentement,
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mais de fagon & rester toujours homogene. Supposons que le refroidissement soit
assez lent et le frottement intérieur du fluide assez fort pour que le mouvement de
rotation reste le méme dans les diverses portions du fluide. Dans ces conditions le
fluide tendra toujours a prendre une figure d’équilibre séculairement stable. Le
moment de la quantité de mouvement restera d’ailleurs constant.

“ Au début, la densité étant tres faible, la figure de la masse est un ellipsoide de
révolution tres peu différent d’une sphére.  Le refroidissement aura d’abord pour effet
d’augmenter laplatissement de lellipsoide, qui restera cependant de révolution.
Quand T'aplatissement sera devenu & peu preés égal a £, Vellipsoide cessera d’étre de
révolution et deviendra un ellipsoide de Jacosi. Le refroidissement continuant, la
masse cessera d’étre ellipsoidale; elle deviendra dissymétrique par rapport au plan
des yz, et elle affectera la forme représentée dans la figure, p. 347.%

“ Comme nous l'avons fait observer & propos de cette figure, I'ellipscide semble se
creuser légerement dans sa partie moyenne, mais plus pres de I'un des deux sommets
du grand axe; la plus grande partie de la matiere tend & se rapprocher de la forme
sphérique, pendant que la plus petite partie sort de lellipsoide par un des sommets
du grand axe, comme si elle cherchait & se détacher de la masse principale.

“ 11 est difficile d’annoncer avec certitude ce qui arrivera ensuite si le refroidisse-
ment continue, mais il est permis de supposer que la masse ira en se creusant de plus
en plus, puis en s'étranglant dans la partie moyenne, et finira par se partager en deux
corps isolés.

“On pourrait étre tenté de chercher dans ces considérations une confirmation ou une
réfutation de I'hypothese de LAPLACE, mais on ne doit pas oublier que les conditions
sont ici trés différentes, car notre masse est homogene, tandis que la nébuleuse de
LarLACE devait étre tres fortement condensée vers le centre.” t

It was in the hope that the investigation might throw some light on the nebular
hypothesis of Larrace and Kant that I first undertook the work. It must be
admitted, however, that we do not obtain much help from the results. It is justly
remarked by M, PoiNncarE that the conditions for the separation of a satellite from a
nebula differ from those of his problem in the great concentration of density in the
central body. But both his investigation and the considerations adduced here seem
to show that, when a portion of the central body becomes detached through increasing
angular velocity, the portion should bear a far larger ratio to the remainder than is
observed in the satellites of our system as compared with their planets; and it is hardly
probable that the heterogeneity of the central body can make so great a difference in
the result as would be necessary if we are to make an application of these ideas. It
appears then at present necessary to suppose that after the birth of a satellite, it it
takes place at all in this way, a series of changes occur which are quite unknown.

* The furrowed ellipsoid of Jicopr,
1 Poixcart, ¢ Acta Mathemat.,” 7, 1885, p. 379.
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A PPENDIX.

On the Energy and Stability of the System.

M. Poincarf has shown in his admirable memoir, referred to in the Summary, how the dynamical
stability of a rotating fluid system in relative equilibrium depends on the energy. Certain factors in
the expression for the energy, which he calls coeflicients of stability, are there proved to afford the
required criterion.

It will now be shown how in this case these coeflicients of stability are determinable, at least as far as
spherical harmonic analysis permitse The results will also cast an interesting light on the methods by
which the equations to the two masses have been obtained.

13

The task before us is to determine the ¢ exhaustion of potential energy’ of the two masses in
presence of one another as due to the deformation of each from the spherical figure by yielding to
gravitation and to centrifugal force. ’

The work will be rendered simpler by the introduction of a new notation. Let us write, then, as the

equations to two shapes, which are not necessarily together a figure of equilibrium :—

k= \
o +1/4\8 /a "“‘9{ Wi Sy }
=1 L By et Z TE g R
+k§2 2ls—2<c> <) m?‘" D 7k

:1+22k+1 kz{Vka——PSQWIc-;-‘Z}
r=2 2k — 2 \¢

@)

hsy 81s

It will be observed that these equations have the same form as (72), but that the constants introduced
are different from the %, [, m, ¢, which were determined, so that the figures might be figures of equilibrinm.
At present we do not assume that (i.) do represent figures of equilibrium.

The energy lost may be divided into several parts :—

e, the energy lost by the mass o yielding from its spherical figure to the gravitation of the mean
sphere a.

¢,, the exhaustion of mutual energy of that layer of matter on the mass a which constitutes its
departure from sphericity.

e3, the loss of energy due to the deformation of the mass a in presence of the mean sphere 4.

B, B, B, the similar guantities for the mass 4.

(#e),, the loss of mutnal energy of the two layers in presence of one another.

ey, the loss of energy due to the deformation of the mass o in the presence of centrifugal force due
to rotation w.

E,, the similar loss for 4.

1st. ¢ is equal and opposite to the work required to raise each element of the layer on o through half
its own height against the gravity due to the mean sphere a. This gravity is 47a. Co-latitude and
longitude being denoted by 6, ¢, let dw = sin 6 d0 dp, an element of solid angle. In effecting the inte-
grations, the properties of spherical harmonic functions are used without comment, viz. :—

[ fwi\2 " w0\ 4 k+ 2! [ o _
“(1) =i H(‘T’> il e oy T ““’“’ Wi g dar =0,

jjwm;, dw =0, j jw Wiy o dw = 0.

Then, taking only a typical term of the first of (i.),

o=ffen BT O o

g
== (5 @ G ) ]
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whence, with all the terms, and remembering that (a/c)? =, (4/¢)* =T

1 \? A3a? B ABF=" 91 41 hjl—*l*l: P % 4 2! Q:I .
a= 2[(3) 0]2 ¢ 10.2_2 2% —92 b—1 +‘Z/c Z' }' - (i)

The formula for H; may be written down by symmetry.

2nd. e, the exhaunstion of mutual energy of the layer on itself, is half the potential of the layer ab
any element, multiplied by the mass of the element, and integrated over the whole sphere,
The potential of the layer is

4rA3¥Z® 3 fa\F[a\FFL /[ g Sy
kS L B £ o We__ ) SWhyg)
3¢ =0 ‘273-—2<0> <1> <nk'r7‘ PE— >

Then, at an element of the layer r = a, and taking a typical term only, we have

T o

[Am\D A3, (APESE B3 gkl g9l
E) 2\ E ~ o 7 ot “ 1. . . . .
[<3> ¢ :]2<u> -_2270—-2L——1[nk+2.k—2!pk] (iii.)

The formula for F, may be written down by symmetry.

=

6’2:

whence

€ =

ol

The addition of e to e, and of H, to H,, simplifies these expressions by cutting out the factor
immediately following the 3, in either, and replacing it by unity.

3rd. ey is the loss of energy due to raising the layer on a in presence of the mean sphere 4. We
multiply the potential of the sphere 4 by the mass of the element on «, and integrate throughout angular
space.

The potential of the sphere 4, when transferred to the origin o, is

Ar AP 7 [a\t 7‘>”wk
3¢ =0 \¢/ \a/ 7%

7

Then, at an element of the layer » = ¢ and taking a typical term,

4o dB 2+ 1 (AN [a\F2
%= g, zzb—z< )(") “”""<w) e,

_ A\ ABaB | [ABETE .
eg—_<737>—c—§<;> kfz k_ln/c. N A

The expression for I; may be written down by symmetry. On collecting results from (ii.), (iii.),
and (iv.), we have

PO A3 [A\S k= h-1 L I - 91 2}
91+69+e3“<3)'c* <0) = L;l{ ETAW g TP s e ()

and a similar expression for H, + I, + H,.
4th. (Ze), is the loss of energy of one layer in the presence of the other. We take the potential of
the layer on 4, multiply it by the mass of an element on «, and integrate.

whence

-..‘:n

The potential of the layer on 4 when transferred to the origin o, as in (22-i1.), is

4rd? <g>3 {’“ PO e L N N, (L)‘ <_>’L we k4l Tt P, a\k /fr>’f c~w/+2:|

3¢ *\ec poo ice LAVl i—1 a/ ¢ 1 —21E +215—1 7k
Introducing this into the integral, only taking a typical term, and neglecting those terms in the integral
which must vanish, we gct
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drd®  [a\32% 41 /A O b+ i w
(Fe)y =35~ 7<‘> 27»-2( >(> “i’-‘-l{”iw NZ""“)‘Z“’

) k4 4! wp . ,\2
+”i—-21/ﬁ+2zpi1"’f< ¢k+2> d“’}'

Then, effecting the integrations, and putting in the XX, we get
(Be),=

4r\? A3 A k= e=® pi=l o=l [f 441 42l k44l
2 Z) 'y s — T TV N, ; i
<3> @ () <c> pi2 ile z‘—lk—-l{_k!i! N’"‘+2.k—21¢—21k+2113’“}' (vi)

This involves the two figures symmetrically.

Sth. e is the loss of energy in the yielding of the figure o to centrifugal force. To find it, we
multiply the potential due to rotation by the mass of each element of the layer a, and integrate.
By (35) and (52) we know that the rotation potential is

r\2 5 oW,
@ 7

As this only involves harmonics of the second order, we may neglect in the layer o all terms except
those of the second order. Thus we get

A\3 2 2w, \2 Y .
o = %—uﬁa%(;) aﬁiU {ng<%> +%p2<77;04> } dw
A\3 4!
=4s7r.T1-§w2a5<'g) {n2+ 50 OIPZ}

47\2 A3a3 [ 3w?/a P
=<‘3I>T 167<>("2+6}72)} e e e e e e e e (vl

The expression for FE, may be written down by symmetry. OCollecting results from (v.), (vi),
and (vii.), we get, for the whole exhaustion of energy,

47\ A3ad
i <§> o

bz AV o1 L. k2l \ a,)3 rE-1 s BE2
=2 [%<c>k—1{”"_§”"—41.75—2!1"" +?<a b—1 N’f'ﬁN’““zx.k—mP"}]
A\ [a\3 k=@ i=®pi-1 qk=1 {k-m‘! k4 2! L+ 4!
32— s S P .. ,
+ @ (0) <c> T in=1 Ukt N *2,k---2!¢—2!k+2113’1”’}

+%[<>(n2+6p2)+( )(N2+6P2):| C L (viH)

The expression is found without any assumption that the two masses are bounded by level surfaces,
and therefore in equilibrium. But the condition for equilibrium is that the differential coefficients of
B with respect to any one and all of the parameters n, p, N, P, shall vanish. If we equate to zero

dV]dn, we get ,
i=o i—1 !
1—m+—2&<0> DRy,

ise i —1 hlal!

If, however, k = 2, there is on the left-hand side an additional term

Sw? 0&2_,_i Ay w? 03__2_ c\3
Tor o) *H5) 1= 6 (1) =#(1)-

The equation of dV/dN; to zero gives a similar equation.
If we equate to zero dV/dp:, we get
Ti-1 k44!
—_ > P; = 0.
pet s <o> i—1i—21%+ 3!
MDCCCLXXXVIL~-A, 31 '
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If, however, & = 2, there is on the left-hand side an additional term

o) =1 (et = () =)
167 \c) ~ %\¢) 12700 8r\d) 437 **\4
The equation of dV/dP; to zero gives a similar equation.

Now, if we put %+ I for n; except when k=2, and then put hy+ I + %5e (¢/4)? = ny and
similarly introduce the H’s and L’s; and if we pubt pz=mz, except when k=2, and then put
Py = My + P5e (¢/4)3, and similarly introduce the M’s, it is easy to see that the equations (i.) to the
two surfaces become the same as (72), and the equations of condition between » and N, and between
p and P, become exactly those which we found by a different method above in (23), (44), and (59).
The only difference is that the equations for % and I are fused together.

This, therefore, forms a valuable confirmation of the correctness of the long analys1s employed for the
determination of the forms of equilibrium.

The formula (viii.) also enables us to obtain the intrinsic energy of the system, that is to say, the
exhaustion of energy of the concentration of the matter from a state of infinite dispersion to its actual
shape, with its sign changed.

The last line of (viii.) depends on the yielding of the fluid to centrifugal force, and must be omitted
from the exhaustion of energy.

Besides the rest of (viii.), we have in the exhaustion of energy of the system, the exhaustion of the
two spheres and their mutual exhaustion.

It is clear, then, that the intrinsic energy is
— () 3@+ 4 — (g L

Sk=op /A\3 ogf—1 L+ 21 3 pE-1 E+20
_.(&W)QA__O 2 [ < >]:I___1{’"’"~%n"2 + 1P } _'2;_<(}> {Nk—lN)c 4!.]:"_2113]:“}]

A3aP® il o1 [k 44! k+ 4! .
—(—77)2—“ %21?:()2( ><—) @-—-lk--l AR Ninlt‘}‘-—TZ*—Psz} .. (x)

where the n, N, P, p, have their values determined in accordance with the condition that the surfaces are
level surfaces.

In evaluating the intrinsic energy from this formula, it is convenient to refer the energy to that of a
sphere of such radius, b, that its mass is equal to the whole mass of the system. Then % = a3 + 45,
and we may take the intrinsic energy as

(425 G = .

Thus ¢ will be a numerical quantity which is positive.

I find from (ix.), with 8 =1 and o = A, that ¢ = 4873,

With regard to the kinetic energy of the system, we have seen in § 10 that the moment of momentum
is (£7)1b°x u, where g is a numerical quantity, and we find in the course of the determination the
function Sw?/47. Then, since the energy is half the moment of momentum multiplied by the angular
velocity, it is clear that the kinetic energy is

e xin(Ge)-

The kinetic energy, as represented by e = Lu (Bw?/4r)i, is comparable with the intrinsic energy as

represented by 7.
In the case of 8 =1, and ¢ = 4, I find the kinetic energy ¢ = 0925.
Thus the total energy E = ¢ + ¢ = *5798.%

* [See foot-note added to the Summary above. October 10, 1887.]


http://rsta.royalsocietypublishing.org/

a
%
A

A A

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

A

A \
Y o

S

a

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

EQUILIBRIUM OF ROTATING MASSES OF FLUID. 427

If the energy of a system be expressed as the sum of a number of coeflicients, each multiplied by the
square of a parameter, it has been shown by M. Poixcar# that the stability of the system depends on the
signs of these coefficients, which he calls “ the coefficients of stability.” But, if the expression for the
energy involves the products as well as the squares of the parameters, the coefficients of stability are the
roots of a determinantal equation involving the second differentials of the energy with respect to the
parameters.

Let V, a linear quadratic function of z, y, #, &c., be the energy of a system in equilibrium ; then the
determinantal equation is

2V BV &V R )
— —_— — &e.

prea dx dy’ dx d7’ ©
@v L2V _, V.
dy da’ dy? * dydd

av 32V a2V
= — o=, &c.
dz da dz dy’ a7
&e., &e., &e.

The solution of this equation in N involves the determination of the,seyeral fundamental modes of
vibration of the system ; and the roots are the coefficients of stability.

Now suppose that ¥ involves a constant, then, in causing that constant to vary continuously, we have a
series of systems of equilibrium of the same kind; and the coefficients of stability vary continuously ab
the same time. If the system be initially in stable equilibrium, the stability ceases when a coefficient of
equilibrium vanishes. The system at the moment of instability is in a condition of * bifurcation,” that
is fo say, there is another series of shapes of a different kind, of which this shape is a member. In
making the constant vary past the critical value, we find this second series of shapes stable, whilst the
first is unstable.

If the system be in uniform rotation, so that instead of absolute equilibrium there is equilibrinm
relatively to uniformly rotating axes, the same theorems hold true, provided that only one root of the
determinantal equation vanishes at a time. ,

This last is the case which we are considering, and the constant, which we suppose to vary continuously,
is ¢, the distance between the two centres of the mean spheres of radii @ and 4.

When the two masses are far apart the equilibrium is stable, but when they are brought closer a time
may come when one of the coefficients of stability vanishes.

The condition for the vanishing of a coefficient of stability is determined by the determinant (x.) with
A=0.

To find the determinant, we have to evaluate the second differentials of F with respect to the
parameters », N, p, P.

If we form the determinant corresponding to (x.) with A =0, it is obvious that two infinite squares
of entries which are diagonally opposite to one another, and which meet at a corner, are to be filled in
with differentials involving dn dp, dndP, dNdP, dN dp, in the denominators. All these entries are
zero, and hence the infinite determinant splits into two independent infinite determinants, one only
involving the differentials with respect to N, u, and the other only those with respect to P, p. The N, n
determinant may be called “the tidal determinant,” the P, p one “the rotational determinant”; for the
origin of the terms in each is obvious.

By considering only the tidal determinant, we see how the other may be treated very shortly.

For the sake of brevity, write

d2B[dny, AN;

e Ny = — (C@Tdnd)t (— FWANDE (xi.)

Then stability vanishes, as far as regards the tidal forces, when

312
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=0 . . . (xii)
RV 0, 0, n, Ny, 1Ny, 1N,
. 0, 1, 0, ngNy,  n3Ng, 13Ny,
. 0, 0, 1, 9Ny, 19Nz, n,N,,
e Nyny, Nyng, Ngng, 1, 0, 0,
. Ngny, Ngng, Nyny, O, 1, 0,
.o Ny, Ngmg, Ny, O, 0, 1,

It will be observed that, by the notation (xi.), and the appropriate division of the columns and rows of |
the tidal determinant, it has been converted into a determinant in which the diagonal consists of ones.
If we drop certain factors common to the whole, we have, by differentiating (viii.),

PO _ G (AP T BT fa$ Tl BE L PE
dn?~ ®\¢) F—1" ang~ ~ *\¢) k=1 dnmedm dNgdN;
a*E (é)g é‘-g ?3(yk—1 i1 k_}_“’
dng dN; 2 ¢/ \e) k—14—1 Eklqg! ~
PE_ (AP k+2! o1 PE _ _ [0 k+2! T ¢B _ PE__
dpi® *\e) 2 k—21k—1" dpr2 e/ 2 k—21k—1" dprdp; dPrdP
@ =(é)2(43 a\_k+2! o1 Tl 44! ,
dprdP; ~ *? ¢) 2. k—21 k—14¢—1:—21k+2!
 raya (AN /a3, FT1 TiT1 E+d!
= (2) <'E><Z>2k—li——li——2!k-—2!’ e e e e e e s (3L
@F @R @E d2B

0.

dnedpi  dmgdP;  ANpdD;  dNidpi
With these values (xiil.) we easily find, by substitution in (xi.), that

AN [a\F =1 1173k 4 4 .
PR W ol W e e e e .
el 2<c> <c> I_-_k—-l i1 Wrer (xiv.)

[This expression gives the value of each of the entries in the infinite determinant (xii.).

Now it is possible, by a certain laborious investigation which I do not here reproduce, to develope
this infinite *“ tidal ”” determinant in the form of a series, and then to show that, however close the two
masses may be to one another, the series arising from the tidal determinant can never vanish. It may
also be proved that the other infinite determinant, which results from “ rotational” terms, is necessarily
greater than the tidal determinant, and & fortiori can never vanish.]*

Thus it might be held that stability must subsist in the figures of equilibrium until the two masses
come into contact. But, as appears from § 11, it is certain that, if one of the masses be smaller than the
other, this cannot be the case. In fact, the investigation must break down on account of the imperfection
arising from the use of spherical harmonic analysis. :

We have seen that the infinite determinant, which gives the coefficients of stability, splits into two
parts when we rely on spherical harmonic analysis; but when instability ensues it must be brought
about by the joint action of the tidal and rotational forces. It appears certain then that, if a rigorous
analysis were used, this separation would not take place.

Although the present investigation proves thus to be abortive, I have thought it worth while to sketch
the process, because it almost certainly indicates the line that must be pursued whenever a more
rigorous analysis shall be applied to this difficult problem.

* This paragraph, replacing the investigation referred to, added July 12, 1887.
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]:gm?) bell figure of equidibruwrm.
ectioruy pé‘]p@fl/dx/&u]/af to owcls of rotatior.

& ~2449; B-14; )/-—»—«5'; 5 = 0494 momentwnm - (5x)° bsx482]

[A~=a;

i 9.8

D 1015

1-099

1217

asoy

e 1332 ™

Axis of rot

1.355

1-230

Duwmb-bell flgure of  equilibriwm
Sectioru through oocis of  rotation
[A=o; & =2449; ﬂ~ 7 )/:5—',' L0494, momerdum - (%n)ng x 482 ]

Fig. 3.

Fguol masses nearly uv contoct.
Section, perpendicular to aocts of  rotatiorv

£ - 2646, l@:g’; )/:7’,‘ 22 =038; momentun - (37)3be x 472 ]

Aois of rotations

1178

West ,Newman. % C? lLith.
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Hguod massses reorly e contact.
Sectiorw t]zJ owghy  aocis of rotatiorn.. ,
[A-a; &~ 2646; By iy - LA 038, momentam - (§7)°b°x 472

ar

F.’ig, 5.

Axcis of Totouion
,v /
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y
/
a
/
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//

1271

1175

Unequol nausses;  section. puperod/(w,(ﬂ/’ to  aexis  of  rolatiore.
[ 43 (4]-27; &-~189; §~566; y~036; I 32)
“ 066 ; *nx)m@nx‘,um (g“)" box-29 ]

Fig. 6

Ureequads rru,c&sus S eciiLOTL bhrough/ wxcls ol rotodior.
[ A (8 an & ise; 4566,y =036, [~ 32

, 2, ‘
L 0665 momentwm~( )2 b5 x 29 ]

3-33
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